ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of N‑Vinylcarbazoles via
Dehydrogenative Coupling of N‑H
Carbazoles with Alkenes under
Palladium Catalysis
Daisuke Takeda,† Koji Hirano,† Tetsuya Satoh,*,†,‡ and Masahiro Miura*,†
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita,
Osaka 565-0871, Japan, and JST, ACT-C, 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp
Received January 20, 2013
ABSTRACT
The synthesis of N-vinylcarbazoles was achieved by the palladium-catalyzed aza-Wacker reaction of N-H carbazoles with styrenes. In this
reaction, Markovnikov adducts were exclusively produced. In contrast, the reaction with electron-deficient alkenes such as acrylates and
acrylamides gave only anti-Markovnikov adducts.
N-Vinylcarbazoles have been recognized to be an
important class of monomers for the production of poly-
(vinylcarbazole)s.1 Polymers and oligomers containing
carbazole moieties are now widely utilized in organic
electroluminescence (EL) devices, photocopiers, and non-
linear optical (NLO) systems, etc.1,2 However, their con-
ventional preparation methods are problematic because
of their multistep procedures and low selectivity and
efficiency. Recently, the palladium- and copper-catalyzed
coupling reactions of N-H carbazoles with vinyl bromides
have been developed for the simple preparation of
N-vinylcarbazoles.3 From the atom- and step-economical
points of view, a more attractive approach is the oxidative
coupling of N-H carbazoles with alkenes. In this kind of
intermolecular aza-Wacker reaction, however, the nucleo-
philes are so far limited to amides and carbamates.4
(3) (a) Liao, Q.; Wang, Y.; Zhang, L.; Xi, C. J. Org. Chem. 2009, 74,
6371. (b) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
(c) Lebedev, A. Y.; Izmer, V. V.; Kazyul’kin, D. N.; Beletskaya, I. P.;
Voskoboynikov, A. Z. Org. Lett. 2002, 4, 623. See also reviews concern-
ing catalytic CÀN coupling reactions of organic halides with amines:
(d) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805. (e) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852.
(4) (a) Liu, X.; Hii, K. K. Eur. J. Org. Chem. 2010, 5181. (b) Liu, G.;
Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (c) Lee, J. M.; Ahn, D.- S.;
Jung, D. Y.; Lee, J.; Do, Y.; Kim, S. K.; Chang, S. J. Am. Chem. Soc.
2006, 128, 12954. (d) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc.
2005, 127, 17888. (e) Brice, J. L.; Harang, J. E.; Timokhin, V. I.;
Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868. (f)
Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003,
125, 12996. (g) Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-I.
Tetrahedron Lett. 1992, 33, 6643. See also a review: (h) Kotov, V.;
Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910.
† Osaka University.
‡ JST.
(1) Selected examples: (a) Yomogida, T.; Watanabe, M.; Takeshima,
M.; Aoki, S. Jpn. Kokai Tokkyo Koho. JP 201241387, 2012. (b) Angiuli,
M.; Ciardelli, F.; Colligiani, A.; Greco, F.; Romano, A.; Ruggeri, G.;
Tombari, E. Appl. Opt. 2006, 45, 7928. (c) Brustolin, F.; Castelvetro,
V.; Ciardelli, F.; Rugger, G.; Colligiani, A. J. Polym. Sci., Part A:
Polym. Chem. 2001, 39, 253. (d) Park, S.-H.; Ogino, K.; Sato, H. Synth.
Met. 2000, 113, 135. (e) Trofimov, B. A.; Mikhaleva, A. I.; Morozova,
L. V. Russ. Chem. Rev. 1985, 54, 609.
(2) Selected examples: (a) Jiang, W.; Duan, L.; Qiao, J.; Dong, G.;
Zhang, D.; Wang, L.; Qui, Y. J. Mater. Chem. 2011, 21, 4918. (b)
Albrecht, K.; Yamamoto, K. J. Am. Chem. Soc. 2009, 131, 2244. (c)
Watanabe, S.; Okada, H. Jpn. Kokai Tokkyo Koho. JP 200418787,
2004. (d) Kawakami, T.; Sonoda, N. Appl. Phys. Lett. 1993, 62, 2167.
r
10.1021/ol4001697
XXXX American Chemical Society