ChemComm
Communication
porphyrin dimers, which can be detected easily by UV spectro-
scopy, may find applications in solvent-controlled optical
molecular devices. We believe that the results of the present
study have important implications for the complete under-
standing of the mechanisms of conformational preferences in
N,N0-diarylureas.
Fig. 5 UV/vis spectra of (a) 3 (7.1 ꢂ 10ꢀ6 M) and (b) 4 (6.3 ꢂ 10ꢀ6 M) in THF/
n-hexane. The ratio of n-hexane is 0 (red), 50 (purple), 70 (blue) and 90% (green).
The insets show the enlarged view of the Soret band.
Notes and references
1 (a) N. Volz and J. Clayden, Angew. Chem., Int. Ed., 2011, 50, 12148;
(b) L. Fischer and G. Guichard, Org. Biomol. Chem., 2010, 8, 3101.
2 In this study, trans/cis nomenclature is used for the conformations
of N,N0-diarylurea bonds, based on the spatial relationship between
N-aryl group and carbonyl oxygen atom, as shown in Fig. 1a.
3 The results of our search on the CCDC database (WebCSD v.1.1.1,
Feb. 2012 version): F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci.,
2002, 58, 380.
trans-ethene-bridged bis(nickel octaethylporphyrin).14 Interest-
ingly, the intensity of the Soret band of compound 3 in THF
gradually decreased as the solvent ratio of n-hexane in THF was
increased, and a blue-shifted Soret band appeared at 388 nm when
the ratio of n-hexane : THF reached 90 : 10. Since no significant
spectral change was observed when n-hexane was added to a
solution of the porphyrin monomer (4) in THF, the spectral change
observed for compound 3 can be attributed to an intramolecular
conformational change from the extended form to the (cis, cis)
form with cofacial porphyrin rings. This assignment is supported
by the fact that the spectral pattern of 3 closely resembles that of
cis-ethene-bridged bis(nickel octaethylporphyrin), which has a
face-to-face arrangement.14 A similar solvent-induced spectral
change of 3 was observed using the CHCl3/n-hexane system as a
solvent (Fig. S8, ESI†). The observed spectral changes can be
explained as follows: the secondary urea-bridged bisporphyrin (3)
preferentially adopts the (trans, cis) form in THF or CHCl3 solution.
With increasing amounts of n-hexane, the (cis, cis) form becomes
favored, with the two porphyrin rings in the face-to-face arrange-
ment. This was confirmed by 1H NMR analysis of 3, in which the
ratio of (cis, cis) conformer in CDCl3-n-C6D14 (7 : 3) was larger than
that in CDCl3 (Fig. S9, ESI†). We believe this is the first spectral
evidence that the preferred conformation of an acyclic aromatic
secondary urea without an N-alkyl group can be switched from
(trans, cis) to (cis, cis).
4 There are a few examples of N,N0-diarylureas that adopt (cis, cis) or
(trans, cis) conformations in the solid state: (a) V. Bohmer,
D. Meshcheryakov, I. Thondorf and M. Bolte, Acta Crystallogr., Sect.
C: Cryst. Struct. Commun., 2004, 60, o136; (b) H. Zitt, I. Dix, H. Hopf
and P. G. Jones, Eur. J. Org. Chem., 2002, 2298; (c) D. Meshcheryakov,
¨
¨
F. Arnaud-Neu, V. Bohmer, M. Bolte, V. Hubscher-Bruder, E. Jobin,
I. Thondorf and S. Werner, Org. Biomol. Chem., 2008, 6, 1004;
(d) O. Molokanova, A. Bogdan, M. O. Vysotsky, M. Bolte, T. Ikai,
¨
Y. Okamoto and V. Bohmer, Chem.–Eur. J., 2007, 13, 6157;
¨
(e) D. Meshcheryakov, V. Bohmer, M. Bolte, V. Hubscher-Bruder
and F. Arnaud-Neu, Chem.–Eur. J., 2009, 15, 4811.
5 (a) W. Dannecker, J. Kopf and H. Rust, Cryst. Struct. Commun., 1979,
8, 429; (b) P. Ganis, G. Avitabile, E. Benedetti, C. Pedone and
M. Goodman, Proc. Natl. Acad. Sci. U. S. A., 1970, 67, 426;
(c) U. Lepore, G. Castronuovo, Lepore, P. Ganis, G. Germain and
M. Goodman, J. Org. Chem., 1976, 41, 2134; (d) K. Yamaguchi,
G. Matsumura, H. Kagechika, I. Azumaya, Y. Ito, A. Itai and
K. Shudo, J. Am. Chem. Soc., 1991, 113, 5474; (e) A. Tanatani,
H. Kagechika, I. Azumaya, R. Fukutomi, Y. Ito, K. Yamaguchi and
K. Shudo, Tetrahedron Lett., 1997, 38, 4425.
6 (a) T. L. Kurth and F. D. Lewis, J. Am. Chem. Soc., 2003, 125, 13760;
(b) G. B. D. Santos and F. D. Lewis, J. Phys. Chem. A, 2005, 109, 8106;
`
(c) J. Clayden, L. Lemiegre and M. Helliwell, J. Org. Chem., 2007,
`
72, 2302; (d) J. Clayden, L. Lemiegre, G. A. Morris, M. Pickworth,
T. J. Snape and L. H. Jones, J. Am. Chem. Soc., 2008, 130, 15193;
(e) M. Kudo, T. Hanashima, A. Muranaka, H. Sato, M. Uchiyama,
I. Azumaya, T. Hirano, H. Kagechika and A. Tanatani, J. Org. Chem.,
2009, 74, 8154.
7 J. Clayden, U. Hennecke, M. A. Vincent, I. H. Hillier and
M. Helliwell, Phys. Chem. Chem. Phys., 2010, 12, 15056.
8 C. A. Hunter, M. N. Meah and J. K. M. Sanders, J. Am. Chem. Soc.,
1990, 112, 5773.
9 M. O. Senge, K. R. Gerzevske, G. H. Vicente, T. P. Forsyth and
K. M. Smith, Angew. Chem., Int. Ed. Engl., 1993, 32, 750.
10 A. Osuka, S. Nakajima, T. Nagata, K. Maruyama and K. Toriumi,
Angew. Chem., Int. Ed. Engl., 1991, 30, 582.
The electrochemical properties of 3 were investigated by
means of cyclic voltammetry. The bisporphyrin (3) exhibited
three oxidation waves (0.66, 0.93 and 1.16 V vs. SCE, Fig. S10,
ESI†). From the comparison with cyclic volammograms of
nickel octaethylporphyrin, or other bisporphyrin derivatives,
as described in the legend of Fig. S10 (ESI†), the bisporphyrin 11 J. P. Fillers, K. G. Ravichandran, I. Abdalmuhdi, A. Tulinsky and
C. K. Chang, J. Am. Chem. Soc., 1986, 108, 417.
12 (a) A. Osuka and K. Maruyama, J. Am. Chem. Soc., 1988, 110, 4454;
(3) adopts (cis, cis) conformation upon the first oxidation to
form a porphyrin mixed-valence p-cation radical.
(b) V. V. Borovkov, J. M. Lintuluoto and Y. Inoue, J. Phys. Chem. B,
We present that urea-bridged bisporphyrin (3) exhibits cis–
trans conformational switching depending on the solvent prop-
erties, and can adopt the cofacial porphyrin dimer structure
under certain conditions. Strong p–p interactions between
porphyrin rings account for the preferential (cis, cis) structure
of the secondary urea bond, which is unfavorable for simple
N,N0-diarylureas without an N-alkyl group. We also found that
the conformational preference can be switched by electro-
chemical stimulus. This unique conformational switching of
the urea bond, and the change in the dynamic behaviors of
1999, 103, 5151; (c) J. T. Fletcher and M. J. Therien, J. Am. Chem. Soc.,
2002, 124, 4298; (d) S. Yagi, M. Ezoe, I. Yonekura, T. Takagishi and
H. Nakazumi, J. Am. Chem. Soc., 2003, 125, 4068; (e) V. V. Borovkov,
J. Fujii, A. Muranaka, G. A. Hembury, T. Tanaka, A. Ceulemans,
N. Kobayashi and Y. Inoue, Angew. Chem., Int. Ed., 2004, 43, 5481;
( f ) J. P. Collman, A. O. Chong, G. B. Jameson, R. T. Oakley, E. Rose,
E. R. Schmittou and J. A. Ibers, J. Am. Chem. Soc., 1981, 103, 516.
13 M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure Appl. Chem., 1965,
11, 371.
14 (a) M. O. Senge, M. G. H. Vicente, K. R. Gerzevske, T. P. Forsyth and
K. M. Smith, Inorg. Chem., 1994, 33, 5625; (b) H. Higuchi, M. Shinbo,
M. Usuki, M. Takeuchi, Y. Hasegawa, K. Tani and J. Ojima, Bull.
Chem. Soc. Jpn., 1999, 72, 1887.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.