The electrophilic aminating reagents have been used for
the CꢀN bond formation in the absence of external
oxidants. The o-CꢀH bonds of benzamides/aryl oximes
were aminated at an ambient temperature with the aid of
N-chloroamines (Scheme 1, eq 1).5f,g An elegant approach
Rh(III)-catalyzed pyridyl- and/or oxime-directed amida-
tion of arene CꢀH bonds with sulfonyl azides6,7 has
recently been reported by the Chang group;7a this process
produces the benign N2 gas byproduct.
chemo- and regioselective o-CꢀH amidation of arenes in
N-benzoylated methylphenyl sulfoximine (MPS) with
sulfonyl azide amino source (Scheme 1, eq 2). The MPS-
DG can be cleaved from the product and recovered. This
method is successfully employed herein, enabling the
synthesis of HMR 1766.
Table 1. Screening of o-CꢀH Amidation with Tosyl Azidea
Scheme 1. Amide-Directed o-CꢀN Bond Formation
additive
base
solvent
yield
(%)b
entry
(40 mol %)
(0.1 mmol)
(1.0 mL)
1c
AgSbF6
AgSbF6
AgBF4
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
CH2Cl2
<5
41
2
3
32
4
AgPF6
<5
<5
37
5
KPF6
6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
AgSbF6
A survey of these reports reveal that the o-CꢀH amina-
tion on arenes has been achieved with the assistance of
modifiable directing groups (DGs),5,7 while the identical
reaction with the aid of a reusable DG has yet to be
investigated. Furthermore, the Ru-catalyzed intermolecu-
lar o-CꢀH amination is rare.7ꢀ9 The use of reusable
sulfoximine10 DGs for the development of novel CꢀH
functionalizations led us to disclose our preliminary
studies on the Ru(II)-catalyzed intermolecular direct
7
CHCl3
38
8
9d
toluene
9
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
56e
60e
76e
81e
59e
78e
56g
69h
10d
11d
12d
13d
14d,f
15b,d
16b,d
Cu(OAc)2.H2O
NaOAc
KOAc
AgOAc
KOAc
KOAc
KOAc
a Reaction conditions: 2a (0.1 mmol), 3a (0.2 mmol), [RuCl2(p-
cymene)]2 (5 mol %). b Crude 1H NMR conversion based on the ratio
of starting material to product. c [RhCp*Cl2]2 (5 mol %). d [RuCl2(p-
cymene)]2 (10 mol %). e 2a (0.5 mmol), ClCH2CH2Cl (2.0 mL), isolated
yields. f KOAc (0.25 mmol). g 80 °C. h 100 °C.
(6) For informations on organic azides, see: (a) Katsuki, T. Chem.
Lett. 2005, 34, 1304. (b) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.;
Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234. (c)
Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
(7) (a) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang,
S. J. Am. Chem. Soc. 2012, 134, 9110. (b) Ryu, J.; Shin, K.; Park, S. H.;
Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (c) Shi, J.;
Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.
(8) (a) Louillat, M.-L.; Patureau, F. W. Org. Lett. 2013, 15, 164. (b)
Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Org. Lett. 2012, 14, 5030. (c)
Leung, S. K.-Y.; Tsui, W.-M.; Huang, J.-S.; Che, C.-M.; Liang, J.-L.;
Zhu, N. J. Am. Chem. Soc. 2005, 127, 16629. (d) Liang, J.-L.; Yuan,
S.-X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2002,
41, 3465. (e) He, L.; Chan, P.W.H.; Tsui, W.-M.; Yu, W.-Y; Che, C.-M.
Org. Lett. 2004, 6, 2405. (f) Harvey, M. E.; Musaev, D. G.; Du Bois, J.
J. Am. Chem. Soc. 2011, 133, 17207. (g) Milczek, E.; Boudet, N.; Blakey, S.
Angew. Chem., Int. Ed. 2008, 47, 6825.
(9) (a) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886. (b)
Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112,
5879. (c) Ackermann, L. Chem. Rev. 2011, 111, 1315. (d) Ackermann, L.
Pure Appl. Chem. 2010, 82, 1403. (e) Ackermann, L.; Vicente, R. Top.
Curr. Chem. 2010, 292, 211. (f) Ackermann, L.; Lygin, A. V. Org. Lett.
2012, 14, 764. (g) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci.
2012, 3, 177. (h) Padala, K.; Jeganmohan, M. Org. Lett. 2012, 14, 1134.
(i) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. Org.
Lett. 2012, 14, 2058. (j) Kwon, K.-H.; Lee, D. W.; Yi, C. S. Organome-
tallics 2012, 31, 495. (k) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang,
B. Org. Lett. 2012, 14, 736. (l) Li, B.; Feng, H.; Wang, N.; Ma, J.; Song,
H.; Xu, S.; Wang, B. Chem.;Eur. J. 2012, 18, 12873. (m) Flegeau, E. F.;
Bruneau, C.; Dixneuf, P. H.; Jutand, A. J. Am. Chem. Soc. 2011, 133,
10161. (n) Lakshman, M. K.; Deb, A. C.; Chamala, R. R.; Pradhan, P.;
Pratap, R. Angew. Chem., Int. Ed. 2011, 50, 11400. (o) Ackermann, L.;
Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.
(10) (a) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem.;Eur. J. 2012,
18, 5541. (b) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2012, 14,
3724.
To find the general reaction conditions for the o-CꢀH
amidation of arenes, compound N-[m-methylbenzoyl]-
MPS (2a) was subjected to the known reaction condi-
tions (RhCp*Cl2)2 (5 mol %)/AgSbF6 (0.4 equiv) in
ClCH2CH2Cl (DCE) with tosyl azide at 120 °C] reported
by Chang.7a We were pleased to notice a trace amount of
the desired product 4a (entry 1, Table 1). Interestingly, the
o-CꢀH amidation product 4a was observed in 41% yield
by NMR, when [RuCl2(p-cymene)]2 was employed in
combination with AgSbF6 (entry 2). Among the two
different arenes of 2a, the less hindered o-CꢀH bonds of
the N-benzoylated aryl ring has been exclusively function-
alized, demonstrating chemo- as well as regioselective
CꢀH amidation of arenes. Screening of other Ag/K salts
did not show satisfactory results (entries 3ꢀ5). Among
various solvents examined, DCE was found to be the best
compared with CH2Cl2, CHCl3, and toluene (entries 6ꢀ8).
The enhanced catalyst loading resulted in improved yield
of 4a (entry 9). Base plays an important role in the case of
CꢀH functionalizations;8,9 thus, exploration of different
bases isinvestigated. AmongAgOAc, NaOAc, KOAc, and
B
Org. Lett., Vol. XX, No. XX, XXXX