practical access to heteroaromatic sulfone compounds is
highly desired from a synthetic practicality viewpoint.
Recently, significant progress has been made in transition-
metal-catalyzed CÀH bond functionalization.9 Sub-
stantial growth in carbonÀheteroatom bond formation
based on the transition-metal-catalyzed CÀH bond acti-
vation has been observed.10 Nevertheless the development
of effective CÀS bond formation reactions is still under-
developed compared to CÀN11 and CÀO12 bond forma-
tion. Until very recently, several representative examples
were reported by Doi and Dong involving intra- and
intermolecular reactions to generate the CÀS bond.13
Quinoline N-oxides are widely present in biologically
active compounds,14 and they are important intermediates
for the syntheses of substituted quinoline as motifs in
biologically active compounds.15 Moreover, N-oxide
could serve as a directing group and allow CÀH function-
alization to occur at the 2-position.16 In our continuing
effort to develop versatile CÀX (X = C, O, S, N) bond
formations based on metal-catalyzed CÀH activation of
quinoline N-oxides,17 we embarked on the development of
CÀS bond formation. Herein, we disclose a highly prac-
tical procedure to build 2-aryl sulfonyl quinolines in one
step from quinoline N-oxides with aryl sulfonyl chloride
catalyzed by a cheap metal, copper.
We initiated our investigation on the model reaction of
quinoline N-oxides with p-tolylsulfonyl chloride to opti-
mize the critical reaction parameters (Table 1). To our
delight, the direct C2-sulfonylation took place in the pres-
ence of Pd(OAc)2 (10 mol %) and K2CO3 (2 equiv) in
toluene under air, affording compound 3a in 47% yield
(entry 1, Table 1). Compound 3a was identified by 1D and
2D NMR spectra. Inspired by this result, various catalysts,
such as PdCl2, Pd(PhCN)2Cl2, Pd(PPh3)2Cl2, Pd(TFA)2,
CuI, CuCl, and CuBr, werescreened(entries1À8, Table1).
10 mol % CuI provided product 3a in the highest yield
(73%, entry 8, Table 1). A 41% yield was obtained in the
absence of catalyst (entry 9, Table 1). It was found that
the solvent played a crucial role in this transformation.
Among the solvents examined (toluene, dioxane,
C2H5OH, NMP, DMAc, CH3CN, DME, DCE, DMA,
and DMF, entries 10À18, Table 1), DCE was the best,
affording 3a in 91% yield (entry 18, Table 1). The base also
played an important role in the reaction. No product was
detected in the absence of any base (entry 26, Table 1).
K2CO3 was superior to other bases, such as Na2CO3,
NaHCO3, KHCO3, Cs2CO3, CsF, KOAc, and Et3N
(entry 18 vs entries 19À25, Table 1). The yield decreased
to 79% when the catalyst loading was reduced to 5 mol %
from 10 mol % (entry 27, Table 1). After surveying a
variety of catalysts, bases, solvents, and catalyst loadings,
we found that the combination of 10 mol % of CuI and
2 equiv of K2CO3 in DCE at 100 °C for 24 h served as the
(2) (a) Becker, D. P.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; Bond,
B. R.; Carroll, J.; Carron, C. P.; DeCrescenzo, G. A.; Easton, A. M.;
Freskos, J. N.; Funckes-Shippy, C. L.; Heron, M.; Hockerman, S.;
Howard, C. P.; Kiefer, J. R.; Li, M. H.; Mathis, K. J.; McDonald, J. J.;
Mehta, P. P.; Munie, G. E.; Sunyer, T.; Swearingen, C. A.; Villamil, C. I.;
Welsch, D.; Williams, J. M.; Yu, Y.; Yao, J. J. Med. Chem. 2010, 53,
6653. (b) Nuti, E.; Panelli, L.; Casalini, F.; Avramova, S. I.; Orlandini,
E.; Santamaria, S.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.;
Cercignani, G.; D’Amelio, N.; Maiocchi, A.; Uggeri, F.; Rossello, A.
J. Med. Chem. 2009, 52, 6347. (c) La Regina, G.; Coluccia, A.; Brancale,
A.; Piscitelli, F.; Gatti, V.; Maga, G.; Samuele, A.; Pannecouque, C.;
Schols, D.; Balzarini, J.; Novellino, E.; Silvestri, R. J. Med. Chem. 2011,
54, 1587.
(3) (a) Liu, K. G.; Robichaud, A. J.; Bernotas, R. C.; Yan, Y.; Lo,
J. R.; Zhang, M. Y.; Hughes, Z. A.; Huselton, C.; Zhang, G. M.; Zhang,
J. Y.; Kowal, D. M.; Smith, D. L.; Schechter, L. E.; Comery, T. A.
J. Med. Chem. 2010, 53, 7639. (b) Ivachtchenko, A. V.; Golovina, E. S.;
Kadieva, M. G.; Kysil, V. M.; Mitkin, O. D.; Tkachenko, S. E.; Okun,
I. M. J. Med. Chem. 2011, 54, 8161. (c) Crosignani, S.; Pretre, A.;
Jorand-Lebrun, C.; Fraboulet, G.; Seenisamy, J.; Augustine, J. K.;
Missotten, M.; Humbert, Y.; Cleva, C.; Abla, N.; Daff, H.; Schott, O.;
Schneider, M.; Burgat-Charvillon, F.; Rivron, D.; Hamernig, I.;
Arrighi, J. F.; Gaudet, M.; Zimmerli, S. C.; Juillard, P.; Johnson, Z. J.
Med. Chem. 2011, 54, 7299.
(4) La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Gatti, V.;
Maga, G.; Samuele, A.; Pannecouque, C.; Schols, D.; Balzarini, J.;
Novellino, E.; Silvestri, R. J. Med. Chem. 2011, 54, 1587.
(5) (a) Liu, K. G.; Robichaud, A. J.; Bernotas, R. C.; Yan, Y.; Lo,
J. R.; Zhang, M.-Y.; Hughes, Z. A.; Huselton, C.; Zhang, G. M.; Zhang,
J. Y.; Kowal, D. M.; Smith, D. L.; Schechter, L. E.; Comery, T. A.
J. Med. Chem. 2010, 53, 7639. (b) Ivachtchenko, A. V.; Golovina, E. S.;
Kadieva, M. G.; Kysil, V. M.; Mitkin, O. D.; Tkachenko, S. E.; Okun,
I. M. J. Med. Chem. 2011, 54, 8161.
(6) Trankle, W. G.; Kopach, M. E. Org. Process Res. Dev. 2007, 11,
913.
(7) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R.
J .Org. Chem. 2004, 69, 5608.
(8) Maloney, K. M.; Kuethe, J. T.; Linn, K. Org. Lett. 2011, 13, 102.
(9) (a) Yu, J. Q., Shi, Z. J. Topics in Current Chemistry; Springer:
Berlin, 2010; Vol. 292. (b) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q.
Angew. Chem., Int. Ed. Engl. 2009, 48, 5094. (c) Engle, K. M.; Mei, T. S.;
Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788. (d) Arockiam, P. B.;
Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (e) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (f) Sun, C. L.; Li, B. J.;
Shi, Z. J. Chem. Rev. 2011, 111, 1293. (g) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (h) Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012,
41, 5588. (i) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am.
Chem. Soc. 2006, 128, 6790. (j) Phipps, R. J.; Grimster, N. P.; Gaunt,
M. J. J. Am. Chem. Soc. 2008, 130, 8172. (k) Brasche, G.; Buchwald, S. L.
Angew. Chem., Int. Ed. Engl. 2008, 120, 1958. (l) Hamada, T.; Ye, X.;
Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833. (m) Ueda, S.; Nagasawa,
H. J. Org. Chem. 2009, 74, 4272. (n) Tang, B. X.; Song, R. J.; Wu, C. Y.;
Liu, Y.; Zhou, M. B.; Wei, W. T.; Deng, G. B.; Yin, D. L.; Li, J. H. J. Am.
Chem. Soc. 2010, 132, 8900. (o) Wendlandt, A. E.; Suess, A. M.; Stahl,
S. S. Angew. Chem., Int. Ed. 2011, 50, 11062.
(10) (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Song,
G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651. (d) Cho,
S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (e)
Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig,
J. F. Chem. Rev. 2010, 110, 890.
(11) (a) Wu, W. B.; Huang, J. M. Org. Lett. 2012, 14, 5832. (b) Tang,
C. H.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. (c) Dhara, D.;
Gayen, K. S.; Khamarui, S.; Pandit, P.; Ghosh, S.; Maiti, D. K. J. Org.
Chem. 2012, 77, 10441.
(12) (a) Jiang, T. S.; Wang, G. W. J. Org. Chem. 2012, 77, 9504. (a)
Guin, S.; Rout, S. K.; Banerjee, A.; Nandi, S.; Patel, B. K. Org. Lett.
2012, 14, 5294.
(13) (a) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett.
2008, 10, 5147. (b) Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Chem.
ꢀ
Commun. 2008, 43, 5529. (c) Zhao, X. D.; Dimitrijevic, E.; Dong, V. M.
J. Am. Chem. Soc. 2009, 131, 3466.
(14) Stich, H. F.; San, R. H. C.; Kawazoe, Y. Nature 1971, 229, 416.
(15) Xi, P. H.; Yang, F.; Qin, S.; Zhao, D. B.; Lan, J. B.; Gao, G.; Hu,
C. W.; You, J. S. J. Am. Chem. Soc. 2010, 132, 1822.
(16) (a) Campeau, L. C.; Rousseaux, S.; Fagnou, K. J. Am. Chem.
Soc. 2005, 127, 18020. (b) Leclerc, J. P.; Fagnou, K. Angew. Chem., Int.
Ed. 2006, 45, 7781. (c) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem.
Soc. 2008, 130, 9254. (d) Campeau, L. C.; Schipper, D. J.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 3266. (e) Wu, J. L.; Cui, X. L.; Chen, L. M.;
Jiang, G. J.; Wu, Y. J. J. Am. Chem. Soc. 2009, 131, 13888. (f) Campeau,
L. C.; Stuart, D. R.; Leclerc, J. P.; Bertrand-Laperle, M.; Villemure, E.;
Sun, H. Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K.
J. Am. Chem. Soc. 2009, 131, 3291. (g) Xiao, B.; Liu, Z. J.; Liu, L.; Fu, Y.
J. Am. Chem. Soc. 2013, 135, 616.
(17) Wu, J. L.; Cui, X. L.; Chen, L. M.; Jiang, G. J.; Wu, Y. J. J. Am.
Chem. Soc. 2009, 131, 13888.
Org. Lett., Vol. 15, No. 6, 2013
1271