10.1002/anie.201913344
Angewandte Chemie International Edition
RESEARCH ARTICLE
[3]
a) J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119;
b) R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P.
Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038; c) J. Mei, Y.
Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135,
6724-6746; d) X. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114,
8943-9021; e) H. Zang, Y. Liang, L. Yu, B. Hu, Advanced Energy
Materials 2011, 1, 923-929.
is lower than that of S-T2 and S-T3. Since the measured stacking
probabilities follow the trends observed for the initial binding
energies, it is inferred that the structure dependence of the
stacking probability originates from variations in the binding
energies of the - stacking.
[4]
[5]
J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Nat.
Acad. Sci. U.S.A. 2002, 99, 5804-5809.
a) S. Wu, M. T. Gonzalez, R. Huber, S. Grunder, M. Mayor, C.
Schoenenberger, M. Calame, Nat. Nanotech. 2008, 3, 569-574; b) S.
Martin, I. Grace, M. R. Bryce, C. Wang, R. Jitchati, A. S. Batsanov, S. J.
Higgins, C. J. Lambert, R. J. Nichols, J. Am. Chem. Soc. 2010, 132,
9157-9164.
Conclusion
In conclusion, we investigated the intermolecular and
intramolecular charge transport properties in single-molecule and
single-stacking thiophene junctions using MCBJ technique. We
demonstrated that the conductance of thiophene-based single-
stacking junctions is nearly independent of the conjugated pattern
and the dominant charge transport path transits from
intramolecular to intermolecular paths when the conjugation
pattern increased. We also found that the major effect from the
increased conjugated region is to improve the dynamic formation
process of single-stacking junction rather than its intrinsic
conductance at molecular level. The results were further
confirmed by the theoretical calculations, which predict similar
conductance tendencies and different binding energies of the
single-stacking junctions. Our results not only provides the
fundamental understanding of structure-property relationship but
also offer fundamental insight into how, from a single-molecule
perspective, microscopic charge transport in highly disordered
materials enables existing aggregation to increase the formation
probability of intermolecular charge transport channels. We
believe our findings will inspire various new design strategies for
the fabrication of high-performance organic devices via molecular
engineering of intermolecular interactions.
[6]
[7]
a) A. Mishra, C.-Q. Ma, J. L. Segura, P. Bäuerle, in Handbook of
Thiophene-Based Materials, John Wiley & Sons, Ltd, 2009, pp. 1-155;
b) M. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036-3140; c) J.-S.
Ni, P. Zhang, T. Jiang, Y. Chen, H. Su, D. Wang, Z.-Q. Yu, R. T. K.
Kwok, Z. Zhao, J. W. Y. Lam, B. Z. Tang, Adv. Mater. 2018, 30,
1805220.
a) L. Xiang, T. Hines, J. L. Palma, X. Lu, V. Mujica, M. A. Ratner, G.
Zhou, N. Tao, J. Am. Chem. Soc. 2016, 138, 679-687; b) B. Capozzi, E.
J. Dell, T. C. Berkelbach, D. R. Reichman, L. Venkataraman, L. M.
Campos, J. Am. Chem. Soc. 2014, 136, 10486-10492; c) S. K. Lee, R.
Yamada, S. Tanaka, G. S. Chang, Y. Asai, H. Tada, ACS Nano 2012,
6, 5078-5082; d) B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, N. J. Tao,
Nano Lett. 2005, 5, 1491-1495; e) E. Leary, H. Höbenreich, S. J.
Higgins, H. van Zalinge, W. Haiss, R. J. Nichols, C. M. Finch, I. Grace,
C. J. Lambert, R. McGrath, J. Smerdon, Phys. Rev. Lett. 2009, 102,
086801.
[8]
[9]
A. I. Yanson, G. R. Bollinger, H. E. van den Brom, N. Agraït, J. M. van
Ruitenbeek, Nature 1998, 395, 783.
a) M. Wawrzyniak, J. Martinek, B. Susla, G. Ilnicki, Acta Phys. Pol., A
2009, 115, 384-386; b) A. Halbritter, P. Makk, S. Mackowiak, S.
Csonka, M. Wawrzyniak, J. Martinek, Phys. Rev. Lett. 2010, 105,
266805; c) A. Mishchenko, L. A. Zotti, D. Vonlanthen, M. Bürkle, F.
Pauly, J. C. Cuevas, M. Mayor, T. Wandlowski, J. Am. Chem. Soc.
2011, 133, 184-187; d) P. Makk, D. Tomaszewski, J. Martinek, Z.
Balogh, S. Csonka, M. Wawrzyniak, M. Frei, L. Venkataraman, A.
Halbritter, Acs Nano 2012, 6, 3411-3423.
[10] A. C. Aragonès, N. Darwish, J. Im, B. Lim, J. Choi, S. Koo, I. Díez-
Pérez, Chem. - Eur. J. 2015, 21, 7716-7720.
[11] C. R. Arroyo, S. Tarkuc, R. Frisenda, J. S. Seldenthuis, C. H. M.
Woerde, R. Eelkema, F. C. Grozema, H. S. J. van der Zant, Angew.
Chem. Int. Edit. 2013, 52, 3152-3155.
[12] W. Hong, D. Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko,
C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012,
134, 2292-2304.
[13] a) A. Magyarkuti, O. Adak, A. Halbritter, L. Venkataraman, Nanoscale
2018, 10, 3362-3368; b) M. H. Garner, H. Li, Y. Chen, T. A. Su, Z.
Shangguan, D. W. Paley, T. Liu, F. Ng, H. Li, S. Xiao, C. Nuckolls, L.
Venkataraman, G. C. Solomon, Nature 2018, 558, 415.
[14] L. Xiang, T. Hines, J. L. Palma, X. Lu, V. Mujica, M. A. Ratner, G. Zhou,
N. Tao, J. Am. Chem. Soc. 2016, 138, 679-687.
[15] R. Gleiter, G. Haberhauer, D. B. Werz, F. Rominger, C. Bleiholder,
Chem. Rev. 2018, 118, 2010-2041.
[16] S. K. Rajagopal, P. S. Salini, M. Hariharan, Crystal Growth & Design
2016, 16, 4567-4573.
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Nos. 21933012, 21722305, 21673195,
21703188), National Key R&D Program of China
(2017YFA0204902), FET Open project 767187–QuIET, the EU
project BAC-TO-FUEL, and the UK EPSRC grants EP/N017188/1,
EP/P027156/1 and EP/N03337X/1 for funding instrumentation
used in Lancaster and the Youth Innovation Promotion
Association CAS (No. 2015024).
[17] S. A. Lee, S. Hotta, F. Nakanishi, J. Phys. Chem. A 2000, 104, 1827-
1833.
[18] M. Carini, M. P. Ruiz, I. Usabiaga, J. A. Fernández, E. J. Cocinero, M.
Melle-Franco, I. Diez-Perez, A. Mateo-Alonso, Nat. Commun. 2017, 8,
15195.
[19] A. R. Rocha, V. M. García-suárez, S. W. Bailey, C. J. Lambert, J.
Ferrer, S. Sanvito, Nat. Mater. 2005, 4, 335.
[20] J. Ferrer, C. J. Lambert, V. M. Garcia-Suarez, D. Z. Manrique, D.
Visontai, L. Oroszlany, R. Rodriguez-Ferradas, I. Grace, S. W. D.
Bailey, K. Gillemot, H. Sadeghi, L. A. Algharagholy, New J. Phys. 2014,
16.
Keywords: thiophene • single-stacking junction • mechanically
controllable break junction • structure-independent conductance•
intermolecular charge transport
[21] R. Frisenda, V. A. E. C. Janssen, F. C. Grozema, H. S. J. van der Zant,
N. Renaud, Nat. Chem. 2016, 8, 1099-1104.
[22] M. K. Al-Khaykanee, A. K. Ismael, I. Grace, C. J. Lambert, RSC
Advances 2018, 8, 24711-24715.
[1]
a) S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-
Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y.
Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.
H. Tok, Z. Bao, Nature 2018, 555, 83-88; b) C. Jiang, H. W. Choi, X.
Cheng, H. Ma, D. Hasko, A. Nathan, Science 2019, 363, 719-723; c) H.
Sirringhaus, Adv. Mater. 2014, 26, 1319-1335.
[2]
a) V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey,
J.-L. Brédas, Chem. Rev. 2007, 107, 926-952; b) Y. Diao, B. C. K. Tee,
G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G.
Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665-671; c) Z.
Shuai, H. Geng, W. Xu, Y. Liao, J.-M. André, Chem. Soc. Rev. 2014,
43, 2662-2679; d) C. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev.
2018, 47, 422-500.
This article is protected by copyright. All rights reserved.