Journal of the American Chemical Society
Communication
(6) Selander, N.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134, 2477.
(7) (a) Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952. (b) Yoo, E.
J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.;
Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730.
(8) Typically, to avoid the carbene dimerization side reactions, a
dilute solution of a diazo compound is added over several hours to a
mixture of rhodium catalyst and a large excess of another reagent.
Certain 1,2,3-triazoles, however, undergo tautomerization in solution
to form α-diazoimines in presumably low concentration. See:
(a) Dimroth, O. Ann. Chem. 1909, 364, 183. (b) Gilchrist, T. L.;
Gymer, G. E. Adv. Heterocycl.Chem. 1974, 16, 33. See also ref 3.
(9) Although unlikely, alternative concerted [3 + 2] cyclization path
and [4 + 2] cycloaddition, followed by reductive elimination, may also
be operating in this transformation.
(10) Structure of compound 2a was confirmed by X-ray
crystallography (CCDC 888986). See Supporting Information (SI)
for details.
(11) (a) Hashimoto, S.; Watanabe, N.; Sato, T.; Shiro, M.; Ikegami,
S. Tetrahedron Lett. 1993, 34, 5109. (b) Tsutsui, H.; Abe, T.;
Nakamura, S.; Anada, M.; Hashimoto, S. Chem. Pharm. Bull. 2005, 53,
1366.
triazole (HOBt) at room temperature resulted in clean
desulfonylation, nearly quantitatively furnishing 2-(arylami-
no)-thiazole 11 (Scheme 1).
The new method for the construction of imidazolones and
thiazoles via a Rh(II)-catalyzed transannulation reaction of 1-
sulfonyl-1,2,3-triazoles with heterocumulenes is practical and
reliable. This formal [3 + 2] cycloaddition reaction features
metal-stabilized azavinyl carbenes as reactive intermediates,
which are conveniently generated from stable and readily
available 1-mesyl-1,2,3-triazoles. Together with a straightfor-
ward synthesis of triazoles, this new method offers a modular
sequence for the formal addition of “S−C−N” and “N−C−N”
fragments to the acetylenic triple bonds leading to useful
families of five-membered nitrogen-containing heterocycles.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, NMR spectra,
and crystallographic data (CIF). This material is available free
(12) (a) Muller, P.; Allenbach, Y. F.; Robert, E. Tetrahedron:
̈
Asymmetry 2003, 14, 779. (b) Muller, P.; Bernardinelli, G.; Allenbach,
̈
Y. F.; Ferry, M.; Flack, H. D. Org. Lett. 2004, 6, 1725.
AUTHOR INFORMATION
Corresponding Author
■
(13) See SI for a complete catalyst screening table.
(14) One notable exception includes ortho-substituted aryl
isocyanates, employment of which resulted in sluggish and low-
yielding reactions, presumably due to the increased steric hindrance at
the reaction center. Similarly, triazoles possessing sterically demanding
groups at the C-4 reacted with isocyanates hesitantly.
Notes
The authors declare no competing financial interest.
(15) Attempts to utilize carbodiimides in this reaction were
unsuccessful.
ACKNOWLEDGMENTS
■
This work was supported by the National Institute of General
Medical Sciences, National Institutes of Health (GM-087620)
and National Science Foundation (CHE-0848982). We also
thank Dr. Arnold L. Rheingold and Dr. Curtis E. Moore for X-
ray analysis.
(16) The structure has been deposited with the Cambridge
Crystallographic Data Centre (CCDC 888987). See SI for details.
(17) Presumably, the highly reactive 1-alkenyl carbene undergoes a
number of side-reactions (e.g., carbene dimerization); this results in
the observed diminished yield in the transannulation reaction.
(18) Wuts, P. G. M.; Greene, T. W. In Protective Groups in Organic
Synthesis, 4th ed.; Wiley: New York, 2007; pp 872−894.
(19) Lee, S. H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.;
Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829.
REFERENCES
■
(1) For cyclopropanation, see: (a) Chuprakov, S.; Kwok, S. W.;
Zhang, L.; Lercher, L.; Fokin, V. V. J. Am. Chem. Soc. 2009, 131,
18034. (b) Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc.
2010, 132, 2510. (c) Zibinsky, M.; Fokin, V. V. Org. Lett. 2011, 13,
4870. (d) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463.
(e) Alford, J. S.; Davies, H. M. L. Org. Lett. 2012, 14, 6020. For
carbenoid insertions, see: (f) Chuprakov, S.; Malik, J. A.; Zibinsky, M.;
Fokin, V. V. J. Am. Chem. Soc. 2011, 133, 10352. (g) Miura, T.;
Biyajima, T.; Fujii, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 194.
For 1,2-alkyl shift, see: (h) Selander, N.; Worrell, B. T.; Fokin, V. V.
Angew. Chem., Int. Ed. 2012, 51, 13054. (i) Miura, T.; Funakoshi, Y.;
Morimoto, M.; Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012,
134, 17440. (j) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.
2013, 52, 1371. For arylation with boronic acids, see: (k) Selander,
N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am.
Chem. Soc. 2012, 134, 14670.
(2) For review, see: Chattopadhyay, B.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2012, 51, 862.
(3) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.;
Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (b) Zibinsky, M.;
Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52, 1507. For N-fused
imidazoles, see: (c) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2007, 46, 4757.
(4) (a) Miura, T.; Yamauchi, M.; Murakami, M. Chem. Commun.
2009, 1470. (b) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13,
3746.
(5) For isolated reports, see: (a) Hubert, A. J.; Feron, A.; Warin, R.;
Teyssie, P. Tetrahedron Lett. 1976, 1317. (b) Drapier, J.; Feron, A.;
Warin, R.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1979, 559.
(c) Bien, S.; Kimmel, T.; Tirosh, N. Acta Chem. Scand. 1993, 47, 218.
D
dx.doi.org/10.1021/ja400350c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX