NJC
X-ray crystallography. Data were collected on a Bruker Smart
Paper
7 F. Zhao, M. L. Ma and B. Xu, Chem. Soc. Rev., 2009, 38,
883–891.
8 A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109–122.
9 T. H. Kim, M. S. Choi, B. H. Sohn, S. Y. Park, W. S. Lyoo and
T. S. Lee, Chem. Commun., 2008, 2364–2366.
10 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133–3160.
11 T. Ishi-I and S. Shinkai, Top. Curr. Chem., 2005, 258,
119–160.
12 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104,
1201–1218.
13 N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34,
821–836.
14 R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew.
Chem., Int. Ed., 2008, 47, 8002–8018.
15 P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699–2715.
16 M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and
J. W. Steed, Chem. Rev., 2010, 110, 1960–2004.
17 A. Kishimura, T. Yamashita and T. Aida, J. Am. Chem. Soc.,
2005, 127, 179–183.
18 H. Lee, J. H. Lee, S. Kang, J. Y. Lee, G. John and J. H. Jung,
Chem. Commun., 2011, 47, 2937–2939.
19 H. Lee, S. H. Jung, W. S. Han, J. H. Moon, S. Kang, J. Y. Lee,
J. H. Jung and S. Shinkai, Chem.–Eur. J., 2011, 17,
2823–2827.
APEX2 ULTRA diffractometer using a graphite monochromated
Mo Ka (l = 0.71 073 Å) radiation source at 173(2) K. The frame
data was processed to give structure factors using SAINT-plus.35
The structure was solved by direct methods and refined by full-
matrix least-squares methods on F2 for data using SHELXTL
software.36 The crystal of 1a appears to contain a certain
amount of the DMF–water solvent mixture trapped in the
crystal lattice in a severely disordered manner. The solvent
could not be reliably modeled and therefore the SQUEEZE
technique37 was used to subtract its contribution from the
diffraction pattern. A SQUEEZE calculation indicated the
presence of 626.7 e per unit cell with a solvent accessible area
volume of 2246.1 Å in 1a. Considering the asymmetric unit, this
may be attributed to one DMF and four water molecules in the
crystal lattice.
Preparation of ligand 1. A solution of 4-aminopyridine
(17.0 g, 18.0 mmol) and distilled triethylamine (24 mL,
18.4 mmol) in distilled THF (200 mL) was added dropwise to
a solution of 1,3,5-cyclohexane tricarboxytrichloride (10 g,
18 mmol) in THF (60 mL) at 0 1C. The reaction mixture was
stirred for 12 h. The temperature was allowed to step up to
room temperature. The brown crude product 1 was collected by
filtration and washed with THF. The product was recrystallized
from methanol (200 mL) by stirring for 1 h. The white powder
was collected by filtration, washed with acetone, and dried
under vacuum for 1 day at room temperature (21.4 g, 30%). Mp:
327 1C. 1H NMR (300 MHz, MeOD-d4): 8.4–8.39 (s, CH), 7.69
20 H. Lee, S. Kang, J. Y. Lee and J. H. Jung, Soft Matter, 2012, 8,
2950–2955.
21 J. H. Lee, S. Kang, J. Y. Lee and J. H. Jung, Soft Matter, 2012,
8, 2557–2563.
(s, CH), 2.66 (s, CH2), 2.2–2.15 (m, CH2), 1.9–1.83 (m, CH2); 13
C
22 J. H. Jung, J. H. Lee, J. R. Silverman and G. John, Chem. Soc.
Rev., 2013, 42, 924–936.
23 S. Kawano, N. Fujita and S. Shinkai, J. Am. Chem. Soc., 2004,
126, 8592–8593.
NMR (300 MHz, DMSO-d6): 174.4, 150.7, 146.15, 113.7, 44.0,
31.1 ppm; IR (KBr, cmꢀ1): 1669, 1591, 1506, 1413, 1381, 1328,
1302, 1250, 1210, 1169, 1001, 855, 821 cmꢀ1; MS (ESI) m/z
445.17 (M+H)+ calcd for C24H24N6O3: 444.19; anal. calcd for
24 K. Tsuchiya, Y. Orihara, Y. Kondo, N. Yoshino, T. Ohkubo,
H. Abe and M. J. Sakai, J. Am. Chem. Soc., 2004, 126,
12282–12283.
C
24H24N6O3: C 64.85, H 5.44, N 18.91%; found: C 64.12, H 5.58,
N 18.89%.
This work was supported by a grant from the World Class
25 T. Tu, W. Assenmacher, H. Peterlik, R. Weisbarth, M. Nieger
Project (WCU) supported by Ministry of Education Science and
Technology (R32-2008-000-20003-0), and NRF (2012R1A4A1027750
and 2012-002547), and the Environmental-Fusion Project (191-091-
004), Korea. In addition, this work was partially supported by a grant
from the Next-Generation BioGreen 21 Program (SSAC, grant#:
PJ009041022012), Rural development Administration, Korea.
¨
and K. H. Dotz, Angew. Chem., Int. Ed., 2007, 46, 6368–6371.
26 B. Xing, M.-F. Choi and B. Xu, Chem.–Eur. J., 2002, 8, 5028–5032.
27 K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto and
N. Kimizuka, J. Am. Chem. Soc., 2004, 126, 2016–2021.
28 O. Roubeau, A. Colin, V. Schmitt and R. Clerac, Angew.
Chem., Int. Ed., 2004, 43, 3283–3286.
29 M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, M. Ojima,
A. Fujii, M. Ozaki and S. Shinkai, Chem.–Eur. J., 2007, 13,
4155–4162.
30 W. Weng, J. B. Beck, A. M. Jamieson and S. J. Rowan, J. Am.
Chem. Soc., 2006, 128, 11663–11672.
31 H.-J. Kim, J.-H. Lee and M. Lee, Angew. Chem., Int. Ed., 2005,
44, 5810–5814.
32 (a) S. S. Babu, V. K. Praveen, S. Prasanthkumar and
A. Ajayaghosh, Chem.–Eur. J., 2008, 14, 9577–9584;
(b) S. S. Babu, K. K. Kartha and A. Ajayaghosh, J. Phys.
Chem. Lett., 2010, 1, 3413–3424.
References
1 G. O. Lloyd and J. W. Steed, Nat. Chem., 2009, 1, 437–442.
2 R. G. Weiss and P. Terech, Molecular Gels: Materials with
Self-Assembled Fibrillar Networks, Springer, Dordrecht, 2006.
3 Z. Yang, P. L. Ho, G. Liang, K. H. Chow, Q. Wang, Y. Cao,
Z. Guo and B. Xu, J. Am. Chem. Soc., 2007, 129, 266–267.
4 S. R. Jadhav, P. K. Vemula, R. Kumar, S. R. Raghavan and
G. John, Angew. Chem., Int. Ed., 2010, 49, 1–5.
5 G. John, B. V. Shankar, S. R. Jadhav and P. K. Vemula,
Langmuir, 2010, 26, 17843–17851.
33 (a) K. Uemura, S. Kitagawa, M. Kondo, K. Fukui, R. Kitaura,
H. C. Chang and T. Mizutani, Chem.–Eur. J., 2002, 8, 3586–3600;
6 P. K. Vemula, J. Li and G. John, J. Am. Chem. Soc., 2006, 128,
8932–8938.
c
2334 New J. Chem., 2013, 37, 2330--2335
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2013