Anomeric ratio of arabinofuranosyl phosphates
Russ.Chem.Bull., Int.Ed., Vol. 65, No. 11, November, 2016 2777
Table 1. Influence of concentration of glycosyl bromide 1 on the
outcome of glycosylation
culated for C34H39NaO11P+: 677.2122. 1H NMR (300 MHz,
CDCl3), δ: 0.84—0.98 (m, 6 H, Bun); 1.32—1.49 (m, 4 H, Bun);
1.55—1.76 (m, 4 H, Bun); 4.15 (qd, 4 H, BunO, J = 6.7 Hz,
J = 3.8 Hz); 4.72 (dd, 1 H, H(5a), J = 13.0 Hz, J = 6.5 Hz);
4.78—4.86 (m, 2 H, H(4), H(5b)); 5.61 (d, 2 H, H(3), J = 3.9 Hz);
5.69 (s, 2 H, H(2)); 6.09 (d, 1 H, H(1), J = 5.0 Hz); 7.25—7.34
(m, 2 H, Ph); 7.37—7.55 (m, 5 H, Ph); 7.56—7.65 (m, 2 H, Ph);
7.98—8.06 (m, 4 H, Ph); 8.06—8.13 (m, 1 H, Ph). 13C NMR
(75 MHz, CDCl3), δ: 13.5, 18.6, 32.1, 32.2 (Bun); 63.4 (C(5)); 67.8
(d, BunO (1), J = 5.5 Hz); 67.9 (d, BunO (2), J = 5.5 Hz); 77.2
(C(3)); 82.0 (d, C(2), J = 11.1 Hz); 83.2 (C(4)); 102.8 (d, C(1),
J = 5.3 Hz); 128.3, 128.5, 128.5, 129.7, 129.9, 133.1, 133.6 (Ph);
165.0, 165.6, 166.0 (CO). 31P NMR (121 MHz, CDCl3), δ: –3.2.
Dibutyl (2,3,5ꢀtriꢀOꢀbenzoylꢀβꢀDꢀarabinofuranosyl) phosꢀ
phate (2b), Rf 0.21 (EtOAc—toluene, 1 : 5.7 (v/v)). 1H NMR
(300 MHz, CDCl3), δ (selected signals): 5.99—6.06 (m, 1 H,
H(2)); 6.26 (dd∼t, 1 H, H(1), J = 5.0 Hz). 13C NMR (75 MHz,
CDCl3), δ: 65.3 (С(5)); 75.0 (С(3)); 79.7 (С(4)); 97.7 (d, С(1),
J = 4.8 Hz). 31P NMR (121 MHz, CDCl3), δ: –2.4.
[1]/(mol L–1 a
)
2a/2b (α/β)b
Yield 2 (%)
0.001
0.002
0.005
0.01
0.02
0.05
0.1
232c
154c
55c
20
11.8
6.7
76
75
78
75
75
77
82
85
2.5
1.5
0.2
a In all experiments the same amount of glycosyl bromide 1
(50 mg, 95 μmol) was used. Concentration of the other reagents
was proportional to the concentration of 1 (molar ratio
1 : Pri2NEt : (BuO)2P(O)OH = 1 : 4 : 4). b Anomeric ratio of the
glycosyl phosphate 2 (α/β) was calculated by integration of the
signals of αꢀ and βꢀanomers of glycosyl phosphates 2 in 31P NMR
spectra of the reaction mixtures after work up. c In the low conꢀ
centration range (0.001—0.005 mol L–1), integration of the sigꢀ
nal of βꢀanomer 2b was not precise due to a low signalꢀtoꢀnoise
ratio. At the same time, in the 31P NMR spectra, the intensity of
the signal of βꢀanomer 2b significantly decreases upon dilution
of the reaction mixture.
This work was supported by the Russian Science Founꢀ
dation (Project No. 16ꢀ13ꢀ10244).
References
1. S. Wolf, R. M. Berrio, C. Meier, Eur. J. Org. Chem., 2011,
6304.
2. S. Wendicke, S. Warnecke, C. Meier, Angew. Chem., Int.
Ed., 2008, 47, 1500.
3. G. K. Wagner, T. Pesnot, R. A. Field, Nat. Prod. Rep., 2009,
26, 1172.
4. D. Majumdar, G. A. Elsayed, T. Buskas, G. J. Boons, J. Org.
Chem., 2005, 70, 1691.
5. E. R. Palmacci, P. H. Seeberger, Org. Lett., 2001, 3, 1547.
6. H. Sakamoto, S. Nakamura, T. Tsuda, S. Hashimoto,
Tetrаhedron Lett., 2000, 41, 7691.
7. P. H. Seeberger, Carbohydr. Res., 2008, 343, 1889.
8. C. H. Hsu, S. C. Hung, C. Y. Wu, C.ꢀH. Wong, Angew.
Chem., Int. Ed., 2011, 50, 11872.
9. S. Boonyarattanakalin, X. Liu, M. Michieletti, B. Lepenies,
P. H. Seeberger, J. Am. Chem. Soc., 2008, 130, 16791.
10. K. C. Chu, C. T. Ren, C. P. Lu, C. H. Hsu, T. H. Sun, J. L.
Han, B. Pal, T. A. Chao, Y. F. Lin, S. H. Wu, C. H. Wong,
C. Y. Wu, Angew. Chem., Int. Ed., 2011, 50, 9391, and referꢀ
ences cited therein.
11. (a) I. Smellie, S. Bhakta, E. Sim, A. J. Fairbanks, Org. Bioꢀ
mol. Chem., 2007, 5, 2257; (b) Y. Li, G. Singh, Tetrahedron
Lett., 2001, 42, 6615.
12. N. Oka, K. Sato, T. Wada, Trends Glycosci. Glycotechnol.,
2012, 24, No.138, 152.
13. L. A. Nazarova, A. M. Shpirt, A. V. Orlova, L. O. Kononov,
Russ. Chem. Bull. (Int. Ed.), 2015, 64, 1202.
14. (a) R. K. Ness, H. G. Fletcher, J. Am. Chem. Soc., 1958, 80,
2007; (b) H.G. Fletcher, in Methods in Carbohydrate Chemisꢀ
try, Eds R. L. Whistler, M. L Wolfrom, Academic Press Inc.,
1963, vol. 2, p. 228; (c) N. M. Podvalnyy, A. I. Zinin, B. V.
Rao, L. O. Kononov, in Carbohydrate Chemistry: Proven Synꢀ
thetic Methods, 2015, vol. 3, Eds R. Roy, S. Vidal, p. 151.
15. A. V. Orlova, A. M. Shpirt, N. Y. Kulikova, L. O. Kononov,
Carbohydr. Res., 2010, 345, 721.
tion mixture. In most publications, results of the glycoꢀ
sylation at only two concentrations, "dilute" (0.001—
0.005 mol L–1) and "regular" (0.05 mol L–1), were usually
compared. A detailed analysis of the influence of concenꢀ
tration on the glycosylation outcome was performed only
in our earlier studies16c,e,f on sialylation.
The reasons of the observed unusual influence of conꢀ
centration on the stereoselectivity of glycosylation with
ararbinofuranosyl bromide 1 can be related to a change in
the glycosylation mechanism15,21 or a change in the strucꢀ
ture of the reaction solution upon dilution16. Clarification
of this issue needs further research, which is the subject of
our current studies.
To a solution of 2,3,5ꢀtriꢀOꢀbenzoylꢀαꢀDꢀarabinofuranosyl
bromide (1) (50 mg, 0.095 mmol) in anhydrous MeCN (half of
the volume, required to obtain the desired concentration (see
Table 1)), a solution prepared from (BuO)2P(O)OH (0.38 mmol,
77 μL) and Pri2NEt (0.38 mmol, 66 μL) in the second half of the
required volume of anhydrous MeCN was added. The reaction
mixture was stirred at ∼20 °С for 2 h. Then saturated aqueous
NaHCO3 (15 mL) was added and the resulting mixture was exꢀ
tracted with toluene (3×20 mL). The combined organic layer
was washed with saturated aqueous NaHCO3 (20 mL) and filꢀ
tered through a layer of Na2SO4 (∼10 mm). The filtrate was
concentrated in vacuo on a waterꢀaspirator pump, the residue was
dried in vacuo on an oil pump. The obtained mixture of the αꢀ and
βꢀglycosyl phosphates 2a and 2b was analyzed by NMR and
TLC on silica gel; yields and anomeric ratios are listed in Table 1.
Dibutyl (2,3,5ꢀtriꢀOꢀbenzoylꢀαꢀDꢀarabinofuranosyl) phosꢀ
phate (2a), Rf 0.32 (EtOAc—toluene, 1 : 5.7 (v/v)), [α]D21 –14.4
(c 1.0, CHCl3). Massꢀspectrum: m/z 677.2118 [M + Na]+. Calꢀ