ChemComm
Communication
We thank Dr Patole for cell culture work at NCCS, Pune,
India, and CCD diffractometer facility at IISc. Aseem thanks
Wellcome Trust–DBT India Alliance and Anurag thanks the
University Grants Commission, India, for Research Fellow-
ships. MG thanks Department of Science and Technology
(DST), Govt. of India and ICGEB, VSC thanks Department of
Biotechnology, Govt. of India and SR thanks DST for support.
We thank the reviewers for their valuable comments.
Notes and references
1 P. Hossain, B. Kawar and M. El Nahas, N. Engl. J. Med., 2007, 356, 213.
2 (a) A. E. Butler, J. Janson and S. Bonner-Weir, et al., Diabetes, 2003,
52, 102; (b) A. Clark, C. A. Wells and I. D. Buley, et al., Diabetes Res.,
1988, 9, 151.
3 (a) P. Westermark, C. Wernstedt and E. Wilander, et al., Proc. Natl.
Acad. Sci. U. S. A., 1987, 84, 3881; (b) G. J. S. Cooper, A. C. Willis and
A. Clark, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 8628.
4 P. Westermark, A. Andersson and G. T. Westermark, Physiol. Rev.,
2011, 91, 795.
5 J. J. Wiltzius, S. A. Sievers and D. Eisenberg, et al., Protein Sci., 2008,
17, 1467.
6 M. Magzoub and A. D. Miranker, FASEB J., 2012, 26, 1228.
7 A. Laganowsky, C. Liu and M. R. Sawaya, et al., Science, 2012, 335, 1228.
8 (a) R. Soong, J. R. Brender and P. M. Macdonald, et al., J. Am. Chem. Soc.,
2009, 131, 7079; (b) J. R. Brender, S. Salamekh and A. Ramamoorthy,
Acc. Chem. Res., 2012, 45, 454.
Fig. 4 A proposed model for the inhibition of hIAPP fibrillization by FGADFL/
FGADFI. (a) Unfolded state of hIAPP; (b) monomeric helical form of hIAPP (2KB8);
(c) 3D structure of the inhibitor FGADFL, stick and surface representations;
(d) inhibitor computationally docked with hIAPP; complex structure. The binding
of inhibitors to hIAPP is expected to discourage the formation of toxic oligomers/
fibrils (e), which in the final stage of aggregation result in amyloid plaques (f).
helical state of hIAPP at the hIAPP20–27 region which is one of
the core fibrillization regions of hIAPP implicated in the
9 L. Haataja, T. Gurlo and C. J. Huang, et al., Endocr. Rev., 2008, 29, 303.
nucleation dependent mechanism for oligomerization and 10 X. B. Mao, C. X. Wang and X. K. Wu, et al., Proc. Natl. Acad. Sci. U. S. A.,
2011, 108, 19605.
initiation of beta-sheet formation during the fibrillization
11 K. Tenidis, M. Waldner and J. Bernhagen, et al., J. Mol. Biol., 2000,
event.19 Binding of the inhibitor would stabilize the monomeric
295, 1055.
helical form of hIAPP and would decrease contact between 12 (a) K. R. Rajashankar, S. Ramakumar and V. S. Chauhan, J. Am.
Chem. Soc., 1992, 114, 9225; (b) K. R. Rajashankar, S. Ramakumar
and T. K. Mal, et al., Angew. Chem., Int. Ed. Engl., 1996, 35, 765;
(c) P. Mathur, S. Ramakumar and V. S. Chauhan, Biopolymers, 2004,
helices coming in the way of helix–helix association. This would
reduce the possibility of oligomer formation and fibrillization.
hIAPP fibrillization inhibitors include organic molecules,20 frag-
ments of hIAPP21,22 as well as variants of native protein14,23–25 and
its fragments.26–28 An approach in these studies was to disrupt
amyloid formation by hIAPP and include peptides containing beta-
breaker residues like Aib, Pro and N-methylated residues.14,23,28 In
many cases, attention has been focused on targeting fibril for-
mation by reducing b-sheet extension and assembly. Targeting
amyloid fibrils may not be a useful strategy due to an adverse
effect of rapidly increasing oligomers.29 Since FGADFL binds to
hIAPP in the monomeric state, it could, in principle, shift the
equilibrium away from the formation of oligomers/intermediates
toxic to beta cells. Therefore, targeting the transient monomeric
helical state and discouraging helix–helix association leading to the
formation of oligomeric nuclei in the early events of self assembly,
as outlined here, may be an attractive strategy for inhibitor design.
To conclude, though it was not anticipated, crystal structure
analysis revealed that FGADFL and its analogue FGADFI harbour
the anion receptor ‘nest’ motif. Both peptides dock with the
helical form of hIAPP which may contribute to the inhibitory
function of the peptides through their interaction with hIAPP in
the core fibrillization region. These peptides effectively inhibit
hIAPP fibrillization in vitro and it seems that these are unique
examples of nest-motif containing peptides that inhibit fibrilli-
zation. In general, the approach described here may be applic-
able to targeting helices or helical intermediates and could be
utilized in developing inhibitors useful, apart from T2DM, in
other amyloid diseases including Alzheimer’s disease and
Parkinson’s disease.30
76, 150; (d) U. A. Ramagopal, S. Ramakumar and D. Sahal, et al.,
Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 870; (e) M. Gupta, R. Acharya
and A. Mishra, et al., ChemBioChem, 2008, 9, 1375.
13 M. L. English and C. H. Stammer, Biochem. Biophys. Res. Commun.,
1978, 83, 1464.
14 A. Abedini, F. Meng and D. P. Raleigh, J. Am. Chem. Soc., 2007,
129, 11300.
15 (a) J. D. Watson and E. J. Milner-White, J. Mol. Biol., 2002, 315, 171;
(b) Rudresh, S. Ramakumar and U. A. Ramagopal, et al., Structure,
2004, 12, 389.
16 S. M. Patil, S. Xu and S. R. Sheftic, et al., J. Biol. Chem., 2009, 284, 11982.
17 (a) G. M. Morris, D. S. Goodsell and R. S. Halliday, et al., J. Comput.
Chem., 1998, 19, 1639; (b) G. M. Morris, R. Huey and W. Lindstrom,
et al., J. Comput. Chem., 2009, 30, 2785.
18 M. C. Lawrence and P. M. Colman, J. Mol. Biol., 1993, 234, 946.
19 J. J. W. Wiltzius, S. A. Sievers and M. R. Sawaya, et al., Protein Sci.,
2009, 18, 1521.
20 J. A. Hebda, I. Saraogi and M. Magzoub, et al., Chem. Biol., 2009,
16, 943.
21 L. A. Scrocchi, Y. Chen and S. Waschuk, et al., J. Mol. Biol., 2002,
318, 697.
22 K. J. Potter, L. A. Scrocchi and G. L. Warnock, et al., Biochim.
Biophys. Acta, 2009, 1790, 566.
23 L. M. Yan, M. Tatarek-Nossol and A. Velkova, et al., Proc. Natl. Acad.
Sci. U. S. A., 2006, 103, 2046.
24 F. Meng, D. P. Raleigh and A. Abedini, J. Am. Chem. Soc., 2010,
132, 14340.
25 J. R. Cort, Z. Liu and G. M. Lee, et al., Protein. Eng., Des. Sel., 2009,
22, 497.
26 A. Kapurniotu, A. Schmauder and K. Tenidis, J. Mol. Biol., 2002,
315, 339.
27 M. Tatarek-Nossol, L. M. Yan and A. Schmauder, et al., Chem. Biol.,
2005, 12, 797.
28 S. Gilead and E. Gazit, Angew. Chem., Int. Ed., 2004, 43, 4041.
29 J. A. Hebda and A. D. Miranker, Annu. Rev. Biophys., 2009, 38, 125.
30 J. D. Sipe, Amyloid Proteins: The b-Sheet Conformation and Disease,
Wiley-VCH, Weinheim, 2005.
c
2690 Chem. Commun., 2013, 49, 2688--2690
This journal is The Royal Society of Chemistry 2013