54
3.7. Selected spectral data
SEM, TEM, XRD and VSM. The catalytic activity of this
solid acid nanocomposite, was probed through the one-pot
3,4-Dihydro-3,3-dimethyl-13-(4-nitrophenyl)-2-H-
synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione and 1H-
indazolo[2,1-b]phthalazine-1,6,11(13H)-trione (Table 2, entry
3): M.P. = 225–227 ◦C. 1H NMR (DMSO-d6, 400 MHz): ı = 1.10 (s,
3H), 1.14 (s, 3H), 2.27 (s, 2H), 3.20 (AB system, dd, 1H, J = 18.8 Hz
and J = 2.0 Hz), 3.32 (AB system, d, 1H, J = 18.8 Hz), 6.44 (s, 1H),
7.79–7.82 (m, 2H), 7.96–8.01 (m, 2H), 8.09–8.12 (m, 4H). 13C NMR
(DMSO-d6, 100.6 MHz): ı = 28.3, 28.4, 34.8, 37.7, 50.6, 64.2, 116.8,
123.8, 127.2, 128.0, 128.9, 129.2, 129.7, 134.3, 135.0, 145.3, 147.6,
152.3, 154.4, 155.9,192.3. IR (KBr) (vmax, cm−1): 2973, 1697, 1617,
1660, 1525, 1368, 1148, 1102, 858, 701.
pyrazolo[1,2-b]phthalazine-5,10-dione derivatives by a three-
component reaction of phthalhydrazide, cyclic or acyclic diketones
and aromatic aldehydes. The attractive features of this method are
simple procedure, cleaner reaction, use of reusable catalyst, easy
workup and performing multicomponent reaction under solvent-
free conditions.
Acknowledgement
3,4-Dihydro-3,3-dimethyl-13-(3-flourophenyl)-2-H-
We gratefully acknowledge the support of this work by Shahid
Chamran University Research Council.
indazolo[2,1-b]phthalazine-1,6,11(13H)-trione (Table 2, entry
6): M.P. = 225–227 ◦C. 1H NMR (DMSO-d6, 400 MHz): ı = 1.11 (s,
3H), 1.13 (s, 3H), 2.27 (s, 2H), 3.18 (AB system, dd, 1H, J = 19.1 Hz
and J = 2.2 Hz), 3.33 (AB system, d, 1H, J = 19.2 Hz), 6.31 (s, 1H),
7.08–7.12 (pt, 1H), 7.31–7.39 (m, 3H), 7.96–7.98 (m, 2H), 8.01–8.12
(m, 1H), 8.26–8.29 (m, 1H). 13C NMR (DMSO-d6, 100.6 MHz):
ı = 28.3, 28.4, 34.7, 37.7, 50.7, 64.3, 114.7, 115.2, 117.0, 124.1,
127.5, 129.0, 129.7, 130.5, 134.2, 135.0, 140.8, 152.9, 154.3, 155.9,
161.3, 163.7, 192.3. IR (KBr) (vmax, cm−1): 2957, 2877, 1663, 1629,
1603, 1471, 1357, 1314, 1271, 1142, 778, 701, 684.
References
[1] Y. Zhang, Y. Zhao, C. Xia, J. Mol. Catal. A: Chem. 306 (2009) 107–112.
[2] C.G. Gill, B.A. Price, W.J. Jones, J. Catal. 251 (2007) 145–152.
[3] Y. Lin, H. Chen, K. Lin, B. Chen, C. Chiou, J. Environ. Sci. 23 (1) (2011) 44–50.
[4] N.M. Mahmoodi, S. Khorramfar, F. Najafi, Desalination 279 (2011) 61–68.
[5] A.R. Kiasat, S. Nazari, J. Mol. Catal. A: Chem. 365 (2012) 80–86.
[6] M. Khoobi, L. Mamani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A.R. Ramazani, A.
Shafiee, J. Mol. Catal. A: Chem. 359 (2012) 74–80.
[7] V.V. Costa, M.J. Jacinto, L.M. Rossi, R. Landers, E.V. Gusevskaya, J. Catal. 282
(2011) 209–214.
[8] A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46 (2007) 1222–1244.
[9] M. Sayyafi, M. Seyyedhamzeh, H.R. Khavasi, A. Bazgir, Tetrahedron 64 (2008)
2375–2378.
[10] R.G. Vaghei, R.K. Nami, Z.T. Semiromi, M. Amiri, M. Ghavidel, Tetrahedron 67
(2011) 1930–1937.
[11] S.S. El-Saka, A.H. Soliman, A.M. Imam, Afinidad 66 (2009) 167–172.
[12] L. Zhang, L.P. Guan, X.Y. Sun, C.X. Wei, K.Y. Chai, Z.S. Quan, Chem. Biol. Drug
Des. 73 (2009) 313–315.
[13] C.K. Ryu, R.E. Park, M.Y. Ma, J.H. Nho, Bioorg. Med. Chem. Lett. 17 (2007)
2577–2580.
[14] J. Li, Y.F. Zhao, X.Y. Yuan, J.X. Xu, P. Gong, Molecules 11 (2006) 574–582.
[15] J. Sinkkonen, V. Ovcharenko, K.N. Zelenin, I.P. Bezhan, B.A. Chakchir, F. Al-Assar,
K. Pihlaja, Eur. J. Org. Chem. 6 (2002) 2046–2053.
[16] D.S. Raghuvanshi, K.N. Singh, Tetrahedron Lett. 52 (2011) 5702–5705.
[17] G. Shukla, R.K. Verma, G.K. Verma, M.S. Singh, Tetrahedron Lett. 52 (2011)
7195–7198.
[18] G. Karthikeyana, A. Pandurangan, J. Mol. Catal. A: Chem. 361/362 (2012) 58–67.
[19] M.R. Nabid, S.J. Tabatabaei, R. Ghahremanzadeh, A. Bazgir, Ultrason. Sonochem.
17 (2010) 159–161.
[20] J.M. Khurana, D. Magoo, Tetrahedron Lett. 50 (2009) 7300–7303.
[21] H.R. Shaterian, F. Khorami, A. Amirzadeh, R. Doostmohammadi, M. Ghashang,
J. Iran. Chem. Res. 2 (2009) 57–62.
[22] H.R. Shaterian, M. Ghashang, M. Feyzi, Appl. Catal. A 345 (2008) 128–133.
[23] X.N. Zhang, Y.X. Li, Z.H. Zhang, Tetrahedron 67 (2011) 7426–7430.
[24] M.S. Singh, S. Chowdhury, RSC Adv. 2 (2012) 4547–4592.
[25] M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Chem. Rev. 109
(2009) 4140–4182.
3,4-Dihydro-3,3-dimethyl-13-(4-hydroxyphenyl)-2-H-
indazolo[2,1-b]phthalazine-1,6,11(13H)-trione (Table 2, entry
4): M.P. = 225–227 ◦C. 1H NMR (DMSO-d6, 400 MHz): ı = 1.10 (s,
3H), 1.14 (s, 3H), 2.27 (d, 2H, J = 4.8 Hz), 3.16 (AB system, dd, 1H,
J = 17.8 Hz and J = 2.0 Hz), 3.32 (AB system, d, 1H, J = 17.2 Hz), 6.20
(s, 1H), 6.86 (d, 2H, J = 8.8 Hz), 7.22 (d, 2H, J = 8.4 Hz), 7.94–7.99 (m,
2H), 8.10–8.12 (m, 1H), 8.25–8.27 (m, 1H), 9.47 (br, 1HOH). 13C
NMR (DMSO-d6, 100.6 MHz): ı = 28.4, 28.5, 34.7, 37.7, 50.8, 64.4,
115.2, 115.3, 118.0, 127.1, 127.9, 128.1, 129.2, 129.4, 134.1, 134.9,
151.4, 154.0, 155.8, 157.7, 192.4. IR (KBr) (vmax, cm−1): 3363(OH),
2960, 1674, 1657, 1634, 1362, 1271, 847, 704.
3,4-Dihydro-3,3-dimethyl-13-(4-methylphenyl)-2H-
indazolo[2,1-b]phthalazine-1,6,11(13H)-trione (Table 2, entry
9): M.P. = 224–226 ◦C. 1H NMR (CDCl3, 400 MHz): ı = 1.17 (s,
6H), 2.25 (s, 3H), 2.28 (s, 2H), 3.18 and 3.37 (AB system, s, 2H,
J = 18.85 Hz), 6.36 (s, 1H), 7.08–7.2 (m, 4H), 7.8 (m, 2H), 8.2–8.3 (m,
2H). 13C NMR (CDCl3, 100.6 MHz): ı = 21.6, 28.8, 29.1,35.0, 38.4,
51.3, 65.1, 118.9, 127.4, 128.0, 128.3, 129.3, 129.5, 129.7, 133.8,
134.8, 138.8, 151.1, 154.6, 156.3, and 192.4. IR (KBr) (vmax, cm−1):
2897, 1663, 1654, 1603, 1600, 1497, 1085, 827, 790, 687, 627, 495.
3,4-Dihydro-3,3-dimethyl-13-(4-chlorophenyl)-2-H-
indazolo[2,1-b]phthalazine-1,6,11(13H)-trione (Table 2, entry
2): M.P. = 224–226 ◦C. 1H NMR (CDCl3, 400 MHz): ı = 1.22 (s, 6H),
2.30 (s, 2H), 3.26 (AB system, d, 1H, J = 18.9 Hz), 3.43 (AB system,
d, 1H, J = 18.8 Hz), 6.42 (s, 1H), 7.27–7.36 (m, 4H), 7.90–7.92 (m,
2H), and 8.31–8.40 (m, 2H). 13C NMR (CDCl3, 100.6 MHz): ı = 23.3,
28.4, 30.8, 34.7, 51.6, 64.0, 117.8, 125.6, 127.9, 128.1, 128.5, 129.2,
129.6, 134.0, 135.0, 142.3, 149.6, 152.0, 154.4, 156.0,192.4.
[26] R.S. Varma, Pure Appl. Chem. 73 (2001) 193–198.
[27] A. Khojastehnezhad, F. Moeinpour, A. Davoodnia, Chin. Chem. Lett. 22 (2011)
807–810.
[28] R. Kumar, K. Raghuvanshi, R.K. Verma, M.S. Singh, Tetrahedron Lett. 51 (2010)
5933–5936.
[29] M.Z. Kassaee, H. Masrouri, F. Movahedi, Appl. Catal. A 395 (2011) 28–33.
[30] Z. Lei, Y. Li, X. Wei, J. Solid State Chem. 181 (2008) 480–486.
[31] Y.L. Tsai, C.H. Chun, J.L. Ou, C.K. Huang, C.C. Chen, Desalination 200 (2006)
97–99.
[32] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice-Hall,
Englewood Cliffs, 2001.
[33] H.R. Shaterian, A. Hosseinian, M. Ghashang, Arkivoc ii (2009) 59–67.
[34] K.D. Kim, S.S. Kim, Y.H. Choa, H.T. Kim, J. Ind. Eng. Chem. 13 (2007) 1137–1141.
[35] H.Y. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Colloids Surf. A: Physicochem.
Eng. Aspects 262 (2005) 87–93.
4. Conclusion
In this research, Fe3O4@silica sulfuric acid core–shell nanocom-
posite was successfully prepared and characterized by FT-IR,