Organic Letters
Letter
(3) Mahajan, S. S.; Scian, M.; Sripathy, S.; Posakony, J.; Lao, U.;
Loe, T. K.; Leko, V.; Thalhofer, A.; Schuler, A. D.; Bedalov, A.;
Simon, J. A. J. Med. Chem. 2014, 57, 3283.
Scheme 6. Proposed Reaction Mechanism
(4) Dilly, S.; Fotso Fotso, A.; Lejal, N.; Zedda, G.; Chebbo, M.;
Rahman, F.; Companys, S.; Bertrand, H. C.; Vidic, J.; Noiray, M.;
Alessi, M. C.; Tarus, B.; Quideau, S.; Riteau, B.; Slama-Schwok, A. J.
Med. Chem. 2018, 61, 7202.
(5) Flick, A. C.; Ding, H. X.; Leverett, C. A.; Fink, S. J.; O’Donnell,
C. J. J. Med. Chem. 2018, 61, 7004.
(6) (a) Abdel-Khalek, H.; Shalaan, E.; El Salam, M. A.; El-Sagheer,
A. M.; El-Mahalawy, A. M. J. Mol. Struct. 2019, 1178, 408. (b) Jung, S.
K.; Heo, J. H.; Lee, D. W.; Lee, S. H.; Lee, S. C.; Yoon, W.; Yun, H.;
Kim, D.; Kim, J. H.; Im, S. H.; Kwon, O. P. ChemSusChem 2019, 12,
224. (c) Moon, S.; Nishii, Y.; Miura, M. Org. Lett. 2019, 21, 233.
(d) Mohan Nalluri, S. K.; Zhou, J.; Cheng, T.; Liu, Z.; Nguyen, M. T.;
Chen, T.; Patel, H. A.; Krzyaniak, M. D.; Goddard, W. A.;
Wasielewski, M. R.; Stoddart, J. F. J. Am. Chem. Soc. 2019, 141,
target product 2 and byproduct S-naphthalene respectively
(e.g., 2t′).
́
1290. (e) Zhylitskaya, H.; Stępien, M. Org. Chem. Front. 2018, 5,
2395.
In summary, we have demonstrated a TfOH-promoted
annulation of benzodiynes for direct construction of 1-OTf-3-
aryl naphthalene with high step and atomic economy.
Furthermore, the products can undergo many types of cross-
coupling reactions to afford more-abundant substituted
naphthalenes.
(7) (a) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
(b) Kar, M.; Basak, A. Chem. Rev. 2007, 107, 2861. (c) Mohamed, R.
K.; Peterson, P. W.; Alabugin, I. V. Chem. Rev. 2013, 113, 7089.
(d) Schreiner, P. R.; Navarro-Vazquez, A.; Prall, M. Acc. Chem. Res.
2005, 38, 29. (e) Wang, K. K. Chem. Rev. 1996, 96, 207.
(8) (a) Ling, F.; Wan, Y.; Wang, D.; Ma, C. J. Org. Chem. 2016, 81,
2770. (b) Chen, C. C.; Chen, C. M.; Wu, M. J. J. Org. Chem. 2014, 79,
4704. (c) Wang, D.; Ling, F.; Liu, X.; Li, Z.; Ma, C. Chem. - Eur. J.
2016, 22, 124.
(9) (a) Miki, K.; Kuge, H.; Umeda, R.; Sonoda, M.; Tobe, Y. Synth.
Commun. 2011, 41, 1077. (b) Liu, R. S.; Taduri, B.; Odedra, A.; Lung,
C. Y. Synthesis 2007, 2007, 2050. (c) Sivaraman, M.; Perumal, P. T.
Org. Biomol. Chem. 2014, 12, 1318. (d) Lo, C.-Y.; Kumar, M. P.;
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, compound characterization
1
data, and the copies of H, 13C, and 19F NMR spectra
Chang, H.-K.; Lush, S.-F.; Liu, R.-S. J. Org. Chem. 2005, 70, 10482.
̌
́
́
(e) Storch, J.; Bernard, M.; Sykora, J.; Karban, J.; Cermak, J. Eur. J.
Org. Chem. 2013, 2013, 260. (f) Taduri, B. P.; Ran, Y. F.; Huang, C.
W.; Liu, R. S. Org. Lett. 2006, 8, 883.
AUTHOR INFORMATION
■
(10) (a) Saxena, A.; Perez, F.; Krische, M. J. J. Am. Chem. Soc. 2015,
137, 5883. (b) Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.;
Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406.
́ ́
̃
(11) Alonso-Maranon, L.; Sarandeses, L. A.; Martínez, M. M.; Perez
Sestelo, J. Org. Chem. Front. 2018, 5, 2308.
Corresponding Author
ORCID
Notes
(12) (a) Hashmi, A. S. K.; Braun, I.; Rudolph, M.; Rominger, F.
Organometallics 2012, 31, 644. (b) Naoe, S.; Suzuki, Y.; Hirano, K.;
Inaba, Y.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2012, 77, 4907.
(c) Hirano, K.; Inaba, Y.; Takasu, K.; Oishi, S.; Takemoto, Y.; Fujii,
N.; Ohno, H. J. Org. Chem. 2011, 76, 9068. (d) Nakamura, K.;
Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc.
2014, 136, 5555. (e) Graf, K.; Hindenberg, P. D.; Tokimizu, Y.; Naoe,
S.; Rudolph, M.; Rominger, F.; Ohno, H.; Hashmi, A. S. K.
ChemCatChem 2014, 6, 199. (f) Hirano, K.; Inaba, Y.; Watanabe,
T.; Oishi, S.; Fujii, N.; Ohno, H. Adv. Synth. Catal. 2010, 352, 368.
(13) (a) Kazakova, A. N.; Iakovenko, R. O.; Boyarskaya, I. A.;
Ivanov, A. Y.; Avdontceva, M. S.; Zolotarev, A. A.; Panikorovsky, T.
L.; Starova, G. L.; Nenajdenko, V. G.; Vasilyev, A. V. Org. Chem.
Front. 2017, 4, 255. (b) Xiang, S. K.; Zhang, L. H.; Jiao, N. Chem.
Commun. 2009, 0, 6487. (c) Singh, G.; Dada, R.; Yaragorla, S.
Tetrahedron Lett. 2016, 57, 4424. (d) Wu, C.; Liu, L.; Wang, D.;
Chen, Y. J. Tetrahedron Lett. 2009, 50, 3786.
(14) (a) Zhang, J.; Li, S.; Qiao, Y.; Peng, C.; Wang, X. N.; Chang, J.
Chem. Commun. 2018, 54, 12455. (b) Liu, W.; Wang, H.; Li, C. Org.
Lett. 2016, 18, 2184. (c) Chen, Y.; Liu, S.; Cui, P.; Zhang, Y.; Liu, Q.;
Zhou, H. Tetrahedron Lett. 2019, 60, 327. (d) Xiang, Y.; Li, Z.; Wang,
L. N.; Yu, Z. X. J. Org. Chem. 2018, 83, 7633. (e) Chen, P.; Song, C.
X.; Wang, W. S.; Yu, X. L.; Tang, Y. RSC Adv. 2016, 6, 80055. (f) Liu,
S.; Liu, H.; Zhou, H.; Liu, Q.; Lv, J. Org. Lett. 2018, 20, 1110.
(15) (a) Su, X.; Sun, Y.; Yao, J.; Chen, H.; Chen, C. Chem. Commun.
2016, 52, 4537.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by The National Key Research and
Development Program of China (No. 2016YFB0401400),
National Natural Science Foundation of China (Nos.
21871158 and 21672120), the Fok Ying Tong Education
Foundation of China (Grant No. 151014) and Department of
Education of Guangdong Province (No. 2016KCXTD005),
and Youth Foundation of Wuyi University (No. 2017td01).
REFERENCES
■
(1) (a) Henn, C.; Einspanier, A.; Marchais-Oberwinkler, S.;
Frotscher, M.; Hartmann, R. W. J. Med. Chem. 2012, 55, 3307.
(b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev.
2009, 38, 3193. (c) Lin, C. Y.; Wheelock, A. M.; Morin, D.; Baldwin,
R. M.; Lee, M. G.; Taff, A.; Plopper, C.; Buckpitt, A.; Rohde, A.
Toxicology 2009, 260, 16. (d) Wei, J.; Kitada, S.; Rega, M. F.;
Stebbins, J. L.; Zhai, D.; Cellitti, J.; Yuan, H.; Emdadi, A.; Dahl, R.;
Zhang, Z.; Yang, L.; Reed, J. C.; Pellecchia, M. J. Med. Chem. 2009,
52, 4511.
(2) Makar, S.; Saha, T.; Singh, S. K. Eur. J. Med. Chem. 2019, 161,
252.
D
Org. Lett. XXXX, XXX, XXX−XXX