Chemistry - A European Journal p. 4126 - 4140 (2014)
Update date:2022-09-26
Topics:
Suresh
Lopes, Patricia S.
Ferreira, Bruno
Figueira, Claudia A.
Gomes, Clara S. B.
Gomes, Pedro T.
Di Paolo, Roberto E.
MacAnita, Antonio L.
Duarte, M. Teresa
Charas, Ana
Morgado, Jorge
Calhorda, Maria Jose
Reactions of 2-(N-arylimino)pyrroles (HNC4H3C(H)=N- Ar) with triphenylboron (BPh3) in boiling toluene afford the respective highly emissive N,N-boron chelate complexes, [BPh2{κ 2N,N-NC4H3C(H)=N-Ar}] (Ar=C6H 5 (12), 2,6-Me2-C6H3 (13), 2,6-iPr2-C6H3 (14), 4-OMe-C6H 4 (15), 3,4-Me2-C6H3 (16), 4-F-C6H4 (17), 4-NO2-C6H4 (18), 4-CN-C6H4 (19), 3,4,5-F3-C 6H2 (20), and C6F5 (21)) in moderate to high yields. The photophysical properties of these new boron complexes largely depend on the substituents present on the aryl rings of their N-arylimino moieties. The complexes bearing electron-withdrawing aniline substituents 17-20 show more intense (e.g., φf=0.71 for Ar=4-CN-C6H4 (19) in THF), higher-energy (blue) fluorescent emission compared to those bearing electron-donating substituents, for which the emission is redshifted at the expense of lower quantum yields (φf=0.13 and 0.14 for Ar=4-OMe-C6H4 (15) and 3,4-Me2-C6H3 (16), respectively, in THF). The presence of substituents bulkier than a hydrogen atom at the 2,6-positions of the aryl groups strongly restricts rotation of this moiety towards coplanarity with the iminopyrrolyl ligand framework, inducing a shift in the emission to the violet region (λmax=410-465-nm) and a significant decrease in quantum yield (φf=0.005, 0.023, and 0.20 for Ar=2,6-Me2-C6H3 (13), 2,6-iPr 2-C6H3 (14), and C6F5 (21), respectively, in THF), even when electron-withdrawing groups are also present. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have indicated that the excited singlet state has a planar aryliminopyrrolyl ligand, except when prevented by steric hindrance (ortho substituents). Calculated absorption maxima reproduce the experimental values, but the error is higher for the emission wavelengths. Organic light-emitting diodes (OLEDs) have been fabricated with the new boron complexes, with luminances of the order of 3000-cdm-2 being achieved for a green-emitting device. Fluorescent N,N-boron chelate complexes: Mononuclear boron complexes of 2-(N-arylimino)pyrrolyl emit violet to bluish-green colors in solution (see figure, ITO=indium tin oxide, PEDOT:PSS=poly(3,4- ethylenedioxythiophene):poly(styrene sulfonic acid)), depending on the substituents on the N-aryl group. Organic light-emitting diodes have been successfully fabricated with the new boron complexes, achieving luminances of the order of 3000-cdm-2.
View MoreTengzhou Runlong Fragrance Co., Ltd.
website:http://www.tzrunlong.com/
Contact:0086-15665710862
Address:No. 78, Fushan Road, Biomedical Industrial Park, Dawu Town, Tengzhou, Shandong, 277514 China
Hubei Danao Pharmaceutical Co.,Ltd.
website:http://www.danaopharm.com
Contact:+86-719-5251167
Address:Fandan Road,Danjiangkou,Hubei
Nanjing Chemipioneer Pharma&Tech Co.,Ltd
website:http://www.chemipioneer.com.cn
Contact:+86-25-52685700
Address:Room 305,A Block,Biological-Medicine Building,Business Start-up Center,Xin-ke 1st Road, High-tech development zone,Nanjing city,Jiangsu Province, China
Hefei TNJ chemical industry co.,ltd
website:https://www.tnjchem.com
Contact:+86-551-65418695
Address:B911 Xincheng Business Center, Qianshan Road, Hefei Anhui China
Yixing Bluwat Chemicals Co., Ltd.
Contact:+86 510 87821568
Address:Yongan Road, Yixing Chemical Industrial Park, Yixing, Jiangsu, China
Doi:10.1021/ja401908m
(2013)Doi:10.1016/j.bmc.2021.116157
(2021)Doi:10.3987/COM-12-12613
(2013)Doi:10.1016/j.jorganchem.2013.01.021
(2013)Doi:10.1016/j.bmcl.2013.02.005
(2013)Doi:10.1016/j.jfluchem.2013.02.009
(2013)