ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Catalytic Enantioselective AllylꢀAllyl
Cross-Coupling with a Borylated
Allylboronate
Hai Le, Robert E. Kyne, Laura A. Brozek, and James P. Morken*
Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467,
United States
Received January 11, 2013
ABSTRACT
Catalytic enantioselective allylꢀallyl cross-coupling of a borylated allylboronate reagent gives versatile borylated chiral 1,5-hexadienes. These
compounds may be manipulated in a number of useful ways to give functionalized chiral building blocks for asymmetric synthesis.
Recent advances in the palladium-catalyzed cross-
coupling of allyl electrophiles and allyl boronates have
provided an effective strategy for the enantio- and diaste-
A
central feature of this reaction is that, with appropriately
selected ligands, the transformation proceeds by way of a
stereoselective 3,30-reductive elimination that delivers the
branched 1,5-hexadiene as the predominant reaction
product.3,4 While enantioselective allylꢀallyl couplings
have been developed that facilitate the construction of
1,5-hexadienes bearing single tertiary or quaternary cen-
ters, or that possess adjacent tertiary stereocenters, con-
siderable limitations remain. A foremost barrier to the use
of allylꢀallyl coupling as a tool for molecular assembly lies
in the development of general strategies for differentiation
of the product alkenes. In isolated cases, selective function-
alization of the 1,5-diene can be accomplished by exploit-
ing steric bias inthe substrate; however, thisisnot a reliable
site-selective tactic. To more directly address this issue, we
considered that installation of a functional group handle
on one of the allyl coupling partners might provide a more
reoselective construction of chiral 1,5-hexadienes.1,2
(1) For enantioselective allylꢀallyl cross-coupling, see: (a) Zhang, P.;
Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686. (b)
Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011,
133, 9716. (c) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem.
Soc. 2011, 133, 16778.
(2) For linear selective allylꢀallyl couplings, see the following:
Allylstannanes: (a) Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980,
21, 2595. (b) Godschalx, J.; Stille, J. K. Tetrahedron Lett. 1980, 21, 2599.
(c) Goliaszewski, A.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 5028. (d)
Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302. (e) Trost, B. M.;
Pietrusiewicz, K. M. Tetrahedron Lett. 1985, 26, 4039. (f) Goliaszewski,
A.; Schwartz, J. Tetrahedron 1985, 41, 5779. (g) Goliaszewski, A.;
Schwartz, J. Organometallics 1985, 4, 417. (h) Keinan, E.; Bosch, E.
ꢀ
J. Org. Chem. 1986, 51, 4006. (i) Cuerva, J. M.; Gomez-Bengoa, E.;
ꢀ
Mendez, M.; Echavarren, A. M. J. Org. Chem. 1997, 62, 7540. (j) van
(4) For operation of 3,30-reductive elimination in other processes,
see: (a) Keith, J. A.; Behenna, D. C.; Mohr, J. T.; Ma, S.; Marinescu,
S. C.; Oxgaard, J.; Stoltz, B. M.; Goddard, W. A., III. J. Am. Chem. Soc.
2007, 129, 11876. (b) Sieber, J. D.; Liu, S.; Morken, J. P. J. Am. Chem.
Soc. 2007, 129, 2214. (c) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc.
2008, 130, 4978. (d) Sherden, N. H.; Behenna, D. C.; Virgil, S. C.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2009, 48, 6840. (e) Zhang, P.; Morken, J. P.
J. Am. Chem. Soc. 2009, 131, 12550. (f) Trost, B. M.; Zhang, Y. Chem.;
Eur. J. 2010, 16, 296. (g) Chen, J.-P; Peng, Q.; Lei, B.-L; Hou, X.-L; Wu,
Y.-D. J. Am. Chem. Soc. 2011, 133, 14180. (h) Ardolino, M. J.; Morken,
J. P. J. Am. Chem. Soc. 2012, 134, 8770. (i) Keith, J. A.; Behenna, D. C.;
Sherden, N.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Nielsen, R. J.;
Oxgaard, J.; Stoltz, B. M.; Goddard, W. A., III. J. Am. Chem. Soc. 2012,
134, 19050.
Heerden, F. R.; Huyser, J. J.; Williams, D. B. G.; Holzapfel, C. W.
Tetrahedron Lett. 1998, 39, 5281. (k) Nakamura, H.; Bao, M.;
Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 3208. Homoallylic
alcohols: (j) Sumida, Y.; Hayashi, S.; Hirano, K.; Yorimitsu, H.;
Oshima, K. Org. Lett. 2008, 10, 1629. Allylboronates: (l) Flegeau,
E. F.; Schneider, U.; Kobayashi, S. Chem.;Eur. J. 2009, 15, 12247. (m)
ꢀ
Jimenez-Aquino, A.; Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem.
Commun. 2011, 47, 9456.
(3) For examples of 3,30-reductive eliminations applied to allylꢀallyl
ꢀ
ꢀ
systems, see: Reference 1 and (a) Mendez, M.; Cuerva, J. M.; Gomez-
ꢀ
Bengoa, E.; Cardenas, D. J.; Echavarren, A. M. Chem.;Eur. J. 2002, 8,
3620. (b) Cardenas, D. J.; Echavarren, A. M. New J. Chem. 2004, 28, 338.
ꢀ
ꢀ
(c) Perez-Rodrıguez, M.; Braga, A. A. C.; de Lera, A. R.; Maseras, F.;
ꢀ
Alvarez, R.; Espinet, P. Organometallics 2010, 29, 4983.
r
10.1021/ol400088g
XXXX American Chemical Society