Cycloisomerization and iodolactonization reactions have
been used in the construction of Δβ,γ butenolides that bear
R-quaternary stereocenters.11 Vedejs12 and Smith13 have
catalyzed carboxyl migration reactions of 5-arylfuran de-
rived enol carbonates to give ΔR,β and Δβ,γ butenolides.12
Burger has demonstrated that allylic alkoxides can engage
2-fluoro-3-trifluoromethylfurans in tandem SNAr/Claisen
reactivity to produce Δβ,γ butenolides.14 Recently, Ma
described iodide catalyzed, regioselective alkylation of
2-methoxyfuran-3-carboxylic esters to give ΔR,β and Δβ,γ
butenolides.15
Very recently, Arseniyadis and Cossy have elegantly
reported enantioselective TsujiÀTrost type reactions16 of
allyl furan-2-yl carbonates.17 Quaternary centers were
established in 69À90% ee to give Δβ,γ butenolides via
Claisen rearrangement and the corresponding ΔR,β bute-
nolides via further Cope rearrangement.17
prepared by catalytic cyclopropenation of alkynes. The
conversion of cyclopropene carboxylic esters to 2- alkox-
yfurans is a well-known transformation that can be cata-
lyzed by a variety of metals,19 and elegant studies have
extended the scope of such reactions to the synthesis of
fused heterocycles.18 Of the catalysts that promote ring
expansionofcyclopropenes, Rh-basedcatalystsareamong
the most useful, and one-pot syntheses of furans from
alkynes and diazo compounds have been achieved.19À21
Furthermore, Rh(I) and Rh(II) catalysts lead to distinct
regioselectivities in the ring expansion. Liebeskind19a and
Padwa22 have proposed a mechanism that describes the
differing regioselectivities induced by Rh(I) and Rh(II)
catalysts.
We envisioned that readily prepared allylic cycloprope-
necarboxylates (A) could engage in ring expansion reac-
tions to give 2-allyloxyfuran intermediates (B) and that the
resulting allyloxyfurans would subsequently rearrange to
Δβ,γ butenolides (C) via Claisen rearrangement or to the
corresponding ΔR,β butenolides (D) via further Cope re-
arrangement (Scheme 1). Herein, we describe catalytic
methods for realizing these processes and for selective
formation of either Δβ,γ or ΔR,β butenolides (C vs D).
The procedure is not restricted to the reactivity of simple
allyl esters, but it also functions for prenyl esters, progargyl
esters, and esters derived from cyclic and acyclic secondary
allylic alcohols. For more substituted analogs of A, we
describe methods for controlling regioselectivity and chir-
ality transfer from nonracemic allylic esters. Our work
complements the very recent work of Arseniyadis and
Cossy, where asymmetric catalysis is used to transfer
unfunctionalized allyl groups.17a
Scheme 1. Tandem Ring Expansion/Claisen Rearrangements
Cyclopropene carboxylic esters are attractive precursors
for the preparation of butenolides,18 as they can be readily
(9) Liu, H.-J.; Leow, D.-S.; Huang, K.-W.; Tan, C.-H. J. Am. Chem.
Soc. 2009, 131, 7212.
(10) (a) Van den Hoven, B. G.; El Ali, B.; Alper, H. J. Org. Chem.
2000, 65, 4131. (b) Zhang, Q.; Cheng, M.; Hu, X.-Y.; Li, B.-G.; Ji, J.-X.
J. Am. Chem. Soc. 2010, 132, 7256. (c) Shi, Y.-L.; Roth, K. E.; Ramgren,
S. D.; Blum, S. A. J. Am. Chem. Soc. 2009, 131, 18022.
(11) (a) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46,
2074. (b) Komeyama, K.; Takahashi, K.; Takaki, K. Chem. Lett. 2008,
37, 602. (c) Dabrowski, J. A.; Gao, F.; Hoveyda, A. H. J. Am. Chem.
Soc. 2011, 133, 4778. (d) Shi, H.; Fang, L.; Tan, C.; Shi, L.; Zhang, W.;
Li, C.-C.; Luo, T.; Yang, Z. J. Am. Chem. Soc. 2011, 133, 14944.
(e) Wang, W.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3713.
(12) Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.;
Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925.
In general, allylic cycloprop-2-enecarboxylates could be
prepared in good yields by alkylation of the corresponding
acids with allylbromide/DBU or by Steglich esterification.
The rearrangement to Δβ,γ butenolides was first studied
with allylic esters of cycloprop-2-enecarboxylates with-
out vinylic substitution. A number of catalysts were
surveyed, and Rh2(OPiv)4 was found to be highly effec-
tive. Allyl 3-phenylcycloprop-2-enecarboxylate (1a)
gave butenolide 2a in 90% yield. Also rearrangements of
(13) Joannesse, C.; Morrill, L.; Campbell, C.; Slawin, A.; Smith, A.
Synthesis 2011, 2011, 1865.
(14) (a) Burger, K.; Fuchs, A.; Hennig, L.; Helmreich, B. Tetrahedron
Lett. 2001, 1657. (b) Burger, K.; Hennig, L.; Fuchs, A.; Greif, D.;
Spengler, J.; Albericio, F. Monatsh. Chem. 2005, 136, 1763. (c) Burger,
K.; Fuchs, A.; Hennig, L.; Helmreich, B.; Greif, D. Monatsh. Chem.
2001, 132, 929.
(15) Chen, J.; Ni, S.; Ma, S. Adv. Synth. Catal. 2012, 354, 1114.
(16) (a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126,
15044. (b) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. (c) Trost,
B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846.
(20) (a) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. (b)
Sato, H.; Hiroi, K. Tetrahedron Lett. 2006, 47, 5793.
(21) (a) Pang, W.; Zhu, S.-F.; Xin, Y.; Jiang, H.-F.; Zhu, S.-Z.
Tetrahedron 2010, 66, 1261. (b) Li, H.-Y.; Hsung, R. P. Org. Lett.
2009, 11, 4462. (c) Peng, L.-L.; Zhang, X.; Ma, M.; Wang, J.-B. Angew.
Chem., Int. Ed. 2007, 46, 1905. (d) Hamaguchi, M.; Tomida, N.; Iyama,
Y. J. Org. Chem. 2007, 72, 1326. (e) Wyatt, E. E.; Fergus, S.; Galloway,
W. R. J. D.; Bender, A.; Fox, D. J.; Plowright, A. T.; Jessiman, A. S.;
Welch, M.; Spring, D. R. Chem. Commun. 2006, 3296. (f) Ma, S.-M.; Lu,
€
L.-H.; Lu, P. J. Org. Chem. 2005, 70, 1063. (g) Muller, P.; Allenbach,
(17) (a) Fournier, J.; Lozano, O.; Menozzi, C.; Arseniyadis, S.;
Cossy, J. Angew. Chem., Int. Ed. 2013, 52, 1257–1261. (b) Fournier, J.;
Arseniyadis, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 7562.
(18) Miege, F.; Meyer, C.; Cossy, J. Org. Lett. 2010, 12, 248.
(19) (a) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631.
(b) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P. J. Am. Chem.
Soc. 2012, 134, 19981. (c) Davies, H. M. L.; Romines, K. R. Tetrahedron
Y. F.; Bernardinelli, G. Helv. Chim. Acta 2003, 86, 3164. (h) Padwa, A.;
Straub, C. S. J. Org. Chem. 2003, 68, 227. (i) Tollari, S.; Palmisano, G.;
Cenini, S.; Cravotto, G.; Giovenzana, G. B.; Penoni, A. Synthesis 2001,
735. (j) Lee, Y. R.; Suk, J. Y. Tetrahedron Lett. 2000, 41, 4795. (k) Lee,
Y.-R.; Suk, J.-Y.; Kim, B.-S. Tetrahedron Lett. 1999, 40, 6603. (l) Padwa,
A.; Hertzog, D. L.; Nadler, W. R.; Osterhout, M. H.; Price, A. T. J. Org.
Chem. 1994, 59, 1418. (m) Padwa, A.; Hertzog, D. L. Tetrahedron 1993,
49, 2589. (n) Padwa, A.; Kinder, F. R. J. Org. Chem. 1993, 58, 21.
(o) Doyle, M. P.; Pieters, R. J.; Taunton, J.; Pho, H. Q.; Padwa, A.;
Hertzog, D. L.; Precedo, L. J. Org. Chem. 1991, 56, 820. (p) Hoye, T. R.;
Dinsmore, C. J.; Johnson, D. S.; Korkowski, P. F. J. Org. Chem. 1990,
55, 4518.
€
€
1988, 44, 3343. (d) Muller, P.; Granicher, C. Helv. Chim. Acta 1993, 76,
€
521. (e) Muller, P.; Nicole, P.; Doyle, M. P.; Bagheri, V. Helv. Chim. Acta
1990, 73, 1233. (f) Komendantov, M. I.; Domnin, I. N.; Bulucheva, E. V.
Tetrahedron 1975, 31, 2495. (g) Ma, S.-M.; Zhang, J.-L. J. Am. Chem.
Soc. 2003, 125, 12386. (h) Bauer, J. T.; Hadfield, M. S.; Lee, A.-L. Chem.
Commun. 2008, 6405.
(22) Padwa, A.; Kassir, J. M.; Xu, S. L. J. Org. Chem. 1991, 56, 6971.
Org. Lett., Vol. 15, No. 7, 2013
1501