M. Lakshmi Kantam et al. / Journal of Organometallic Chemistry 729 (2013) 9e13
13
The organic layer was dried over anhydrous sodium sulfate, con-
4,40-Dimethylbiphenyl (Table 2, entry 8); 1H NMR (500 MHz,
centrated under vacuum, purified by column chromatography.
CDCl3 þ CD3OD, TMS)
d
¼ 2.38 (s, 6H), 7.22 (d, J ¼ 8.0 Hz, 4H), 7.46
1H NMR (500 MHz, CDCl3, TMS)
d
1.55 (s, 9H), 2.84e2.89 (dd,1H),
(d, J ¼ 7.0 Hz, 4H); 13C NMR (300 MHz, CDCl3)
d
¼ 21.06, 126.77,
2.95e2.99 (dd, 1H), 3.57e3.60 (dd, 1H), 3.69e3.71 (dd, 1H), 4.25 (m,
1H), 7.13 (d,1H, CONH), 7.20e7.31 (m, 5H), 7.40e7.41 (d, J ¼ 7.919 Hz,
1H), 7.542 (s, 1H), 7.66e7.67 (d, J ¼ 6.929 Hz, 1H), 7.88e7.89 (d,
129.40, 136.67, 138.24.
4,40-Dimethoxybiphenyl (Table 2, entry 7): 1H NMR (500 MHz,
CDCl3 þ CD3OD, TMS) ¼ 3.83 (s, 6H), 6.93 (d, J ¼ 8.84 Hz, 4H), 7.44
d
J ¼ 6.929 Hz, 1H), 8.91 (s, 1H); 13C NMR (300 MHz, CDCl3)
d
28.15,
(d, J ¼ 8.84 Hz, 4H); 13C NMR (300 MHz, CDCl3)
d
¼ 55.36, 114.18,
37.13, 53.63, 63.32, 71.17, 126.39, 128.46, 128.56, 129.30, 129.47,
127.73, 133.49, 158.69.
130.23, 130.61, 131.89, 134.57, 138.03, 167.15; IR (KBr):
n
4-Acetylbiphenyl (Table 2, entry 13): 1H NMR (300 MHz,
bar ¼ 3329 cmꢁ1 (br, OH), 3065 cmꢁ1 (aromatic CeH), 1714,
1643 cmꢁ1 (C]O),1538 cmꢁ1 (C]C),1243 cmꢁ1 (C-0),1192 cmꢁ1 (Ce
N); ESI-MS: (M þ Na)þ ¼ 377; HRMS (ESI) calcd for C21H26N2O3Na
(M þ Na)þ: 377.1841; found: 377.1838.
CDCl3 þ CD3OD, TMS) ¼ 2.61 (s, 3H), 7.34e7.47 (m, 3H), 7.57e7.67
d
(m, 4H), 8.00 (d, J ¼ 8.30 Hz, 2H); 13C NMR (300 MHz, CDCl3)
d
¼ 26.57, 127.16, 127.21, 128.17, 128.85, 128.89, 135.83, 139.83,
145.72, 197.63.
4.3. Synthesis of palladium complex (3)
Acknowledgments
To a round bottom flask containing a stirred suspension of pal-
ladium acetate (224.49 mg, 1 mmol) in THF (20 mL) was added 2
(424.8 mg, 1.2 mmol) in one portion followed by LiOH$H2O
(151.2 mg, 3.6 mmol). Upon stirring the solution for 12 h at room
temperature, pale yellow precipitation was obtained. The reaction
mixture was filtered, crude solid was washed with excess THF, water
and finally with methanol to obtain the pure complex in 70% yield.
T.P.R thanks UGC, New Delhi for the award of senior research
fellowship.
Appendix A. Supplementary data
Supplementary data related to this article can be found at http://
1H NMR (300 MHz, CDCl3þCD3OD, TMS)
d 1.650 (s, 9H), 2.95e3.11
(m, 2H), 3.35 (m, 2H), 3.69e3.73 (m, 1H), 7.17e7.47 (m, 8H), 8.019 (s,
References
1H); 13C NMR (300 MHz, CDCl3)
d 27.99, 36.81, 57.10, 65.98, 70.84,
[1] R.F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, New
York, 1985.
[2] J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke (Eds.), Principles and Ap-
plications of Organotransition Metal Chemistry, University Science, Mill Val-
ley, CA, 1987.
[3] F. Diederich, P.J. Stang (Eds.), Metal-catalyzed Cross-coupling Reactions,
Wiley-VCH, Weinheim, 1998.
[4] J. Roncali, Chem. Rev. 92 (1992) 711e738.
72.57, 123.35, 124.74, 125.59, 127.97, 128.64, 129.12, 131.12, 137.18,
139.34,147.62; IR (KBr):
n
bar ¼ 3416 cmꢁ1 (br, OH),1577 cmꢁ1 (C]O),
1518 cmꢁ1 (C]C), 1119 cmꢁ1 (CeN); ESI-MS: (M)þ ¼ 459; HRMS (ESI)
calcd for C21H24N2O3NaPd (M þ Na)þ: 481.0719; found: 481.0699.
4.4. General procedure for the Suzuki reaction of aryl halides
[5] K. Yamamura, S. Ono, H. Ogoshi, H. Masuda, Y. Kuroda, Synlett 1 (1989) 18e19.
[6] K.G.B. Torssell, Natural Product Chemistry, Wiley, Chichester, 1983.
[7] R.H. Thomson, The Chemistry of Natural Products, Blackie and Son, Glasgow,
1985.
[8] D.S. Ennis, J. McManus, W. Wood-Kaczmar, J. Richardson, G.E. Smith,
A. Crastairs, Org. Process. Res. Dev. 3 (1999) 248e252.
[9] O. Baudoin, M. Cesario, Daniel. Guenard, F. Gueritte, J. Org. Chem. 67 (2002)
1199e1207.
The reaction vessel was charged with aryl halide (1 mmol),
boronic acid (1.5 mmol), cesium carbonate (1 mmol) and the cat-
alyst 3 (0.1 mol%) in methanol (2 mL). The reaction mixture was
stirred at room temperature and the progress of reaction was
monitored by TLC. After completion of the reaction, methanol was
removed under reduced pressure and the reaction mixture was
diluted with EtOAc (20 mL), washed with 1 N aq. HCl and water. The
combined organic phase was dried over anhydrous Na2SO4. After
removal of the solvent, the residue was subjected to column
chromatography on silica gel using ethyl acetate and hexane mix-
tures to afford the Suzuki product.
[10] M.T. Reetz, E. Westermann, R. Lohmer, G. Lohmer, Tetrahedron Lett. 39 (1998)
8449.
[11] W.A. Herrmann, Angew. Chem. Int. Ed. 41 (2002) 1290.
[12] B.S. Yong, S.P. Nolan, Chemtracts Org. Chem. (2003) 205.
[13] A.J. Arduengo III, Acc. Chem. Res. 32 (1999) 913e921.
[14] D. Bourissou, O. Guerret, F.P. Gabbai, G. Bertand, Chem. Rev. 100 (2000) 39e91.
[15] F.E. Hahn, Angew. Chem. Int. Ed. 45 (2006) 1348e1352.
[16] M.Z. Kassaee, M.R. Nimlos, K.E. Downie, E.E. Waali, Tetrahedron 41 (1985)
1579e1586.
[17] J.C. Bryan, J.M. Mayer, J. Am. Chem. Soc. 112 (1990) 2298e2308.
[18] R. Schrock, S.W. Seidel, N.C. Mösch-Zanetti, D.A. Dobbs, K.-Y. Shih, W.M. Davis,
Organometallics 16 (1997) 5195e5208.
[19] L. Jafarpour, H.-J. Schanz, E.D. Stevens, S.P. Nolan, Organometallics 18 (1999)
5416e5419.
[20] Q. Yao, M. Zabawa, J. Woo, C. Zheng, J. Am. Chem. Soc. 129 (2007) 3088e3089.
[21] M. Ray, D. Ghosh, Z. Shirin, R. Mukherjee, Inorg. Chem. 36 (1997) 3568e3572.
[22] J.C. Noveron, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 37 (1998)
1138e1139.
[23] D.S. Marlin, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 38 (1999)
3258e3260.
[24] A.K. Patra, M. Ray, R. Mukherjee, Inorg. Chem. 39 (2000) 652e657.
[25] K. B-James, Acc. Chem. Rev. 38 (2005) 671e678.
[26] M. Guo, F. Jiang, R. He, Tetrahedron Lett. 47 (2006) 2033e2036.
[27] O. Navarro, N. Marion, J. Mei, S.P. Nolan, Chem. Eur. J. 12 (2006) 5142e5148.
[28] Y. Deng, L. Gong, A. Mi, H. Liu, Y. Jiang, Synthesis (2003) 337.
[29] G. Zhang, Synthesis (2005) 537.
[30] W.A. Hermann, C. Brossmer, K. Ofele, C.-P. Reisigner, T. Priermeier, M. Beller,
H. Fischer, Angew. Chem. Int. Ed. Engl. 34 (1995) 1844.
[31] W.A. Hermann, C. Brossmer, C.-P. Reisinger, T.H. Riermeier, K. Ofele, M. Beller,
Chem. Eur. J. 3 (1997) 1357e1364.
4.5. Analytical data for the products of the Suzuki reaction
Biphenyl (Table 2, entry 1): 1H NMR (300 MHz, CDCl3, TMS)
d
¼ 7.29e7.31 (m, 2H), 7.39 (t, J ¼ 7.74 Hz, 4H), 7.54 (d, J ¼ 8.49 Hz,
4H); 13C NMR (300 MHz, CDCl3)
¼ 96.19, 127.18, 128.73, 141.30.
4-Methoxybiphenyl (Table 2, entry 2): 1H NMR (300 MHz,
d
CDCl3 þ CD3OD, TMS)
d
¼ 3.83 (s, 3H), 6.92 (d, J ¼ 9.0 Hz, 2H), 7.24
(m, 1H), 7.35 (t J ¼ 8.0 Hz, 2H), 7.48e7.50 (m, 4H); 13C NMR
(300 MHz, CDCl3)
133.78, 140.86, 159.09.
d
¼ 55.24, 114.14, 126.59, 126.71, 128.10, 128.70,
4-Methylbiphenyl (Table 2, entry 3): 1H NMR (300 MHz,
CDCl3 þ CD3OD, TMS) ¼ 2.39 (s, 3H), 7.23e7.26 (m, 2H), 7.29e7.34
d
(m, 1H), 7.39e7.44 (t, J ¼ 8.3 Hz, 2H), 7.50 (d, J ¼ 8.31 Hz, 2H), 7.58
(d, J ¼ 6.79 Hz, 2H); 13C NMR (300 MHz, CDCl3)
d
¼ 21.07, 126.93,
128.67, 129.44, 136.96, 138.30, 141.1.
4-Methoxy-40-methyl-biphenyl (Table 2, entry 6): 1H NMR
[32] M.T. Reetz, G. Lohmer, R. Schwickardi, Angew. Chem. Int. Ed. 37 (1998)
481e483.
[33] R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283e2321.
[34] W.A. Hermann, K. Ofele, S.K. Schneider, E. Herdtweck, S.D. Hoffmann, Angew.
Chem. Int. Ed. 45 (2006) 3859e3862.
(500 MHz, CDCl3 þ CD3OD, TMS)
d
¼ 2.37 (s, 3H), 3.82 (s, 3H), 6.90
(d J ¼ 8.0 Hz, 2H), 7.16 (d, J ¼ 8.0 Hz, 2H), 7.38 (d J ¼ 8.0 Hz, 2H), 7.44
(d, J ¼ 8.0 Hz, 2H); 13C NMR (300 MHz, CDCl3)
d
¼ 21.20, 55.09,
114.15, 126.63, 127.94, 129.42, 133.82, 135.97, 138.18, 158.95.