Group 8 Transition Metal Sulfide Molecules
J. Phys. Chem. A, Vol. 113, No. 18, 2009 5383
(3) Wells, A. F. Structural Inorganic Chemistry, 4th ed.; Clarendon:
Oxford, UK, 1975. (b) Sourisseau, C.; Cavagnat, R.; Fouassier, M. J. Phys.
Chem. Solids 1991, 52, 537.
(4) (a) Williams, R. J. P. Nature (London) 1990, 343, 213. (b) Drobner,
E.; Huber, H.; Wa¨chtersha¨user, G.; Rose, D.; Stetter, K. O. Nature (London)
1990, 346, 742.
(5) Posfai, M.; Buseck, P. R.; Bazylinski, D. A.; Frankel, R. B. Science
1998, 280, 880.
(6) McKay, D. S.; Gibson, E. K.; ThomasKeprta, K. L.; Vali, H.;
Romanek, C. S.; Clemett, S. J.; Chilier, X. D. F.; Maechling, C. R.; Zare,
R. N. Science 1996, 273, 924.
(7) Cosper, N. J.; Booker, S. J.; Ruzicka, F.; Frey, P. A.; Scott, R. A.
Biochemistry, 2000, 39, 15668.
(8) Ugulava, N. B.; Carlos, J. S.; Jarrett, J. T. Biochemistry 2001, 40,
8352.
(9) Anxolabehere-Mallart, E.; Glaser, T.; Frank, P.; Aliverti, A.; Zanetti,
G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2001,
123, 5444.
tions. Although OsO4 is a well-known molecule of tetrahedral
symmetry,45,46 we believe that this is the first experimental
observation of OsS4.
Structure and Bonding Trends within the Group 8 Family.
First, let us compare the group 8 disulfide and dioxide molecules,
which have all been observed in solid argon matrices. Our DFT
3
5
calculations showed that the B1 and B2 states for FeO2 are
close in energy, but the observed 945.8 and 797.1 cm-1
stretching frequencies and oxygen 16/18 isotopic ratios clearly
3
5
fit predictions for the B1 and not the B2 state.26 The reverse
situation holds for FeS2 where the 540.2 and 467.2 cm-1
absorptions and sulfur 32/34 isotopic data match the calculations
5
3
for the B2 state and not the higher energy B1 state (Table 2).
-
-
Both FeO2 and FeS2 were observed in low laser energy
experiments where electron capture products are favored.42c
The bent RuO2 molecule was well described by isotopic
frequencies and calculations for the 1A1 ground electronic state,27
and the case for the 3B1 ground state of RuS2 has been made in
this work. Both OsO2 and OsS2 were adequately described by
isotopic frequencies and calculations for the 3B1 ground
electronic state. In the case of Fe and Ru, the disulfide has higher
spin multiplicity than the dioxide.
(10) Frenchard, F.; Sautet, P. J. Catal. 1997, 170, 402.
(11) Jeevanandam, P.; Koltypin, Y.; Gofer, Y.; Diamant, Y.; Gedanken,
A. J. Mater. Chem. 2000, 10, 2769.
(12) Eckermann, A.; Fenske, D.; Rauchfuss, T. B. Inorg. Chem. 2001,
40, 1459.
(13) Lassiter, J. C.; Luhr, J. F. Geochem. Geophys. Geosys. 2001, 2,
U1.
(14) MacMahon, T. J.; Jackson, T. C.; Freiser, B. S. J. Am. Chem. Soc.
1989, 111, 421.
The open MS2 disulfide is more stable than the side-bonded
M(S2) complex, and this difference increases with group 8 metal
size.
(15) Zhang, N.; Hayase, T.; Kawamata, H.; Nakao, K.; Nakajima, A.;
Kaya, K. J. Chem. Phys. 1996, 104, 3413.
(16) Zhai, H. J.; Kiran, B.; Wang, L.-S. J. Phys. Chem. 2003, 107, 2821.
(17) Harvey, J. N.; Heinemann, C.; Fiedler, A.; Schro¨der, D.; Schwartz,
The side-bonded (η2-O2)FeO2 complex has been character-
ized,26 but the sulfur analog Fe(S2)2 has both disulfur molecules
side-bonded. There is no evidence for the higher energy FeO4
or FeS4 molecules. Both RuO4 and the higher energy side-
bonded (η2-O2)RuO2 complex were observed,27 but the lower
energy (η2-S2)RuS2 complex clearly dominated the RuS4
molecule in the present experiments. In the osmium case, the
much lower energy OsO4 molecule exceeded the (η2-O2)OsO2
complex band absorbance by more than an order of magnitude
whereas OsS4 is only slightly lower in energy than the (η2-
S2)OsS2 complex, and both species are clearly observed here.
These observations are in line with the increasing stability of
the VIII oxidation state on going down the group 8 metal family.
H. Chem.sEur. J. 1996, 2, 1230.
(18) Schro¨der, D.; Kretzschmar, I.; Schwartz, H.; Rue, C.; Armentrout,
P. B. Inorg. Chem. 1999, 38, 3474.
(19) Husband, J.; Aguirre, F.; Thompson, C. J.; Metz, R. B. Chem. Phys.
Lett. 2001, 342, 75.
(20) DeVore, T. C.; Franzen, H. F. High Temp. Sci. 1975, 7, 220. The
542 cm-1 Fe and OCS reaction product first assigned to FeS is due to another
species.
(21) Takano, S.; Yamamoto, S.; Saito, S. J. Mol. Spectrosc. 2004, 224,
137.
(22) Bauschlicher, C. W. Jr.; Maitre, P. Theor. Chim. Acta 1995, 90,
189.
(23) (a) Hu¨bner, O.; Termath, V.; Berning, A.; Sauer, J. Chem. Phys.
Lett. 1998, 294, 37. (b) Hu¨bner, O.; Sauer, J. Phys. Chem. Chem. Phys.
Lett. 2002, 4, 5234.
(24) (a) Bridgeman,A. J.; Rothery, J. J. Chem. Soc., Dalton Trans.
2000, 211. (b) Mebel, A. M.; Hwang, D.-Y. J. Phys. Chem. A 2001,
105, 7460.
Conclusions
(25) Clima, S.; Hendrickx, M. F. A. Chem. Phys. Lett. 2007, 436, 341.
(26) (a) Andrews, L.; Chertihin, G V.; Ricca, A.; Bauschlicher, C. W.,
Jr. J. Am. Chem. Soc. 1996, 118, 467. (b) Chertihin, G. V.; Saffel, W.;
Yustein, J. T.; Andrews, L.; Neurock, M.; Ricca, A.; Bauschlicher, C. W.
Jr. J. Phys. Chem. 1996, 100, 5261. (c) Gong, Y.; Zhou, M.; Andrews, L.,
J. Phys. Chem. A 2007, 111, 12001 (Fe + O2).
Laser-ablated Fe, Ru, and Os atoms were reacted with small
sulfur molecules from a microwave discharge in argon and
condensed at 7 K. Numerous reaction products were identified
from matrix infrared spectra, sulfur-34 isotopic shifts, spectra
of sulfur isotopic mixtures, and frequencies from density
functional calculations. The strongest absorptions of the MS2
disulfide molecules are observed at 540.2, 535.5, and 537.5
cm-1, respectively, for the group 8 metals. The photosensitive
FeS2- anion was detected at 542.1 cm-1. The RuS2 absorption
exhibited five resolved natural ruthenium isotopic splittings.
Evidence is also presented for side-bound M(S2) isomers and
MS4 molecules with the structures Fe(S2)2, (S2)RuS2, and
tetrahedral OsS4, which were computed to be the lowest energy
species for this stoichiometry.
(27) Zhou, M.; Citra, A.; Liang, B.; Andrews, L. J. Phys. Chem. A 2000,
104, 3457.
(28) Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 3738.
(29) Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 6295.
(30) Brabson, G. D.; Mielke, Z.; Andrews, L. J. Phys. Chem. 1991, 95,
79.
(31) (a) Andrews, L.; Citra, A. Chem. ReV. 2002, 102, 885. (b) Andrews,
L.; Cho, H.-G. Organometallics 2006, 25, 4040.
(32) Cho, H.-G.; Lyon, J. T.; Andrews, L. Organometallics 2008, 27,
5241.
(33) Frisch, M. J.; et al. Gaussian 98, reVision A.1; Gaussian, Inc.:
Pittsburgh, PA, 1998.
(34) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
Y.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(35) Perdew, J. P.; Wang, Y. Phys. ReV. B 1992, 45, 13244.
(36) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062.
(37) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (a) Wadt,
W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (b) Hay, P. J.; Wadt, W. R.
J. Chem. Phys. 1985, 82, 299.
Acknowledgment. We gratefully acknowledge financial
support from NSF Grant CHE 00-78836 and NCSA computing
Grant No. CHE07-0004N to L.A.
(38) Frisch, M. J.; et al. Gaussian 03, ReVision C.02; Gaussian, Inc.:
Pittsburgh, PA, 2003.
References and Notes
(1) Stiefel, E. I., Matsumoto, K., Eds.; Transition Metal Sulfur
Chemistry, Biological and Industrial Significance; American Chemical
Society: Washington, DC, 1997.
(39) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Theor. Chim. Acta 1990, 77, 123.
(40) (a) Long, S. R.; Pimentel, G. C. J. Chem. Phys. 1977, 66, 2219.
(b) Smardzewski, R. R. J. Chem. Phys. 1978, 68, 2878.
(2) Rickard, D.; Luther, G. W., III Chem. ReV 2007, 107, 514.