TUNING FRET EFFICIENCY FOR VISIBLE REGION DETECTION OF NAPHTHALENE
CONCLUSION
Acknowledgements
Authors sincerely thank the Department of Environment,
Govt. of West Bengal for financial support. S. Nandi gratefully
acknowledges UGC for fellowship. Authors thank Dr. Bankim
Chandra Ghosh Haldia Government College, West Bengal, India,
for his help.
Three new low-cost fluorescence probes, viz. ANB, APA and ANP,
participate in the FRET process with naphthalene. FRET efficiency
is highest for ANP that allows lowest LOD for naphthalene. Fluo-
rescence lifetime data support the FRET process. Finally, ANP
has been successfully used to determine naphthalene concentra-
tion of Gomti river water, first time ever.
REFERENCES
Agency for Toxic Substances and Disease Registry (ATSDR). 1996. Toxico-
logical profile for naphthalene. U. S. Department of Health and
Human Services: Atlanta, GA.
Anbu, S, Shanmugaraju, S, Ravishankaran, R, Karande, AA, Mukherjee, PS. 2012.
Naphthylhydrazone based selective and sensitive chemosensors for Cu2+
and their application in bioimaging. Dalton Trans. 41: 13330–13337.
Andreoli, R, Manini, P, Bergamaschi, E, Mutti, A, Franchini, I, Niessen,
WMA. 1999. Determination of naphthalene metabolites in human
urine by liquid chromatography–mass spectrometry with
electrospray ionization. J. Chromatogr. A 847: 9–17.
Aoki, I, Sakaki, T, Shinkai, SJ. 1992. A new metal sensory system based on
intramolecular fluorescence quenching on the ionophoriccalix[4]ar-
ene ring. J. Chem. Soc., Chem. Commun. 730–732.
Banerjee, A, Sahana, A, Guha, S, Lohar, S, Hauli, I, Mukhopadhyay, SK,
Matalobos, JS, Das, D. 2012. Nickel(II)-induced excimer formation of
a naphthalene-based fluorescent probe for living cell imaging. Inorg.
Chem. 51: 5699–5704.
Banerjee, A, Sahana, A, Lohar, S, Hauli, I, Mukhopadhyay, SK, Safin, DA,
Babashkina, MG, Bolte M, Garcia Y, Das, D. 2013a. A rhodamine
derivative as a “lock” and SCN – as a “key”: visible light excitable
SCNÀ sensing in living cells. Chem. Commun. 49: 2527–2529.
Banerjee, A, Sahana, A, Lohar, S, Sarkar, B, Mukhopadhyay, SK, Das, D.
2013b. A FRET operated sensor for intracellular pH mapping: strate-
gically improved efficiency on moving from an anthracene to a
naphthalene derivative. RSC Adv. 3: 14397–14405.
Hossain, MA, Yeasmin, F, Rahman, SMM, Rana, MS. 2014. Naphthalene, a
polycyclic aromatic hydrocarbon, in the fish samples from the
Bangsai river of Bangladesh by gas chromatograph–mass spectrom-
etry. Arabian J. Chem. 7: 976–980.
Ji, HF, Brown, GM, Dabestani, R. 1999. Calix[4]arene-based Cs+ selective
optical sensor. Chem. Commun. 609–610.
Kim, JS, Quang, DT. 2007. Calixarene derived fluorescent probes. Chem.
Rev. 107: 3780–3799.
Kishikawa, N, Wada, M, Kuroda, N, Akiyama, S, Nakashima, K. 2003.
Determination of polycyclic aromatic hydrocarbons in milk samples
by high-performance liquid chromatography with fluorescence de-
tection. J. Chromatogr. B 789: 257–264.
Lakowicz, JR. 2006. Principles of fluorescence spectroscopy. University of
Maryland School of Medicine Baltimore: Maryland, USA.
Leray, I, Lefevre, JP, Delouis, JF, Delaire, J, Valeur, B. 2001. Synthesis and
photophysical and cation-binding properties of mono- and
tetranaphthylcalix[4]arenes as highly sensitive and selective fluores-
cent sensors for sodium. Chem. Eur. J. 7: 4590–4598.
Leray, I, Reilly, FO, HabibJiwan, JL, Soumillion, JP, Valeur, BA. 1999. A new
calix[4]arene-based fluorescent sensor for sodium ion. Chem.
Commun. 795–796.
Lim, NC, Schuster, JV, Porto, MC, Tanudra, MA, Yao, L, Freake, HC,
Bruckner, C. 2005. Coumarin-based chemosensors for zinc(II): to-
ward the determination of the design algorithm for CHEF-type and
ratiometric probes. Inorg. Chem. 44: 2018–2030.
Das, S, Guha, S, Banerjee, A, Lohar, S, Sahana, A, Das, D. 2011. 2-(2-Pyridyl)
benzimidazole based Co(II) complex as an efficient fluorescent probe
for trace level determination of aspartic and glutamic acid in aqueous
solution: a displacement approach. Org. Biomol. Chem. 9: 7097–7104.
Das, S, Sahana, A, Banerjee, A, Lohar, S, Guha, S, Matalobos, JS, Das, D. 2012.
Thiophene anchored naphthalene derivative: Cr3+ selective turn-on
fluorescent probe for living cell imaging. Anal. Methods 4: 2254–2258.
Das, S, Sahana, A, Banerjee, A, Lohar, S, Safin, DA, Babashkina, MG, Bolte,
M, Garcia, Y, Hauli, I, Mukhopadhyay, SK, Das, D. 2013. Ratiometric
fluorescence sensing and intracellular imaging of Al3+ ions driven
by an intramolecular excimer formation of a pyrimidine–pyrene scaf-
fold. Dalton Trans. 42: 4757–4763.
Diaz, RC, Sarasa, MA, Rios, C, Cuello, JJ. 1999. Validation of an HPLC
method for the determination of p-dichlorobenzene and naphtha-
lene in moth repellents. Accredit. Qual. Assur. 4: 473–476.
Ellison, SLR, Thompson, M. 2008. Standard additions: myth and reality.
Analyst 133: 992–997.
Lohar, S, Sahana, A, Banerjee, A, Banik, A, Mukhopadhyay, SK, Matalobos,
JS, Das, D. 2013. Antipyrine based arsenate selective fluorescent
probe for living cell imaging. Anal. Chem. 85: 1778–1783.
Malik, A, Verma, P, Singh, AK, Singh, KP. 2011. Distribution of polycyclic
aromatic hydrocarbons in water and bed sediments of the Gomti
River, India. Environ. Monit. Assess. 172: 529–545.
Sahana, A, Banerjee, A, Das, S, Lohar, S, Karak, D, Sarkar, B,
Mukhopadhyay, SK, Mukherjee, AK, Das, D. 2011. A naphthalene-
based Al3+ selective fluorescent sensor for living cell imaging. Org.
Biomol. Chem. 9: 5523–5529.
Sahana, A, Banerjee, A, Guha, S, Lohar, S, Chattopadhyay, A, Mukhopadhyay,
SK, Das, D. 2012. Highly selective organic fluorescent probe for azide
ion: formation of a “molecular ring”. Analyst 137: 1544–1546.
Serio, N, Miller, K, Levine, M. 2013. Efficient detection of polycyclic
aromatic hydrocarbons and polychlorinated biphenyls via three-
component energy transfer. Chem. Commun. 49: 4821–4823.
U.S. Environmental Protection Agency. 1994. Health effects notebook for haz-
ardous air pollutants. Office of Air Planning & Standards: Naphthalene.
Van Der Meer, BW, Coker, GI, Simon Chen, S-Y. 1994. Resonance energy
transfer: theory and data. VCH: New York.
Fernández-Sánchez, JF, Carretero, AS, Cruces-Blanco, C, Fernández-Gu-
tiérrez, A. 2003. The development of solid-surface fluorescence char-
acterization of polycyclic aromatic hydrocarbons for potential
screening tests in environmental samples. Talanta 60: 287–293.
Förster, T. 1948. Intermolecular energy migration and fluorescence. Ann.
Phys. 2: 55–75.
Wang, JB, Qian, XF, Cui, JN. 2006. Detecting Hg2+ ions with an ICT fluores-
cent sensor molecule: remarkable emission spectra shift and unique
selectivity. J. Org. Chem. 71: 4308–4311.
Förster, T. 1949. Experimentelle and theoretische Untersuchung des
zwischenmolekularen Übergangs von Elektronenanregungsenergie.
Z. Naturforsch. A: Astrophys. Phys. Phys. Chem. 4: 321–327.
Gautam, R, Srivastava, A, Jachak, SM. 2011. Simultaneous determination
of naphthalene and anthraquinone derivatives in Rumex nepalensis
Spreng. Roots by HPLC: comparison of different extraction methods
and validation. Phytochem. Anal. 22: 153–157.
Weller, A. 1956. Intramolecular proton transfer in excited states. Zeitscrift
für Elektrochemie 60: 1144–1147.
Xu, Z, Xiao, Y, Qian, X, Cui, J, Cui, D. 2005. Ratiometric and selective
fluorescent sensor for CuII based on internal charge transfer (ICT).
Org. Lett. 7: 889–892.
Zhu, JW, Qin, Y, Zhang, YH. 2010. Magnesium-selective ion-channel mimetic
sensor with a traditional calcium ionophore. Anal. Chem. 82: 436–440.
Guha, S, Lohar, S, Banerjee, A, Sahana, A, Chaterjee, A, Mukherjee, SK,
Matalobos, JS, Das, D. 2012. Thiophene anchored coumarin deriva-
tive as a turn-on fluorescent probe for Cr3+: cell imaging and speci-
ation studies. Talanta 91: 18–25.
SUPPORTING INFORMATION
Han, TY, Feng, X, Tong, B, Shi, JB, Chen, L, Zhi, JG, Dong, YP. 2012. A novel “turn-
on” fluorescent chemosensor for the selective detection of Al3+ based on
aggregation-induced emission. Chem. Commun. 48: 416–418.
Additional supporting information can be found in the online
version of this article at the publisher’s website.
J. Mol. Recognit. 2016; 29: 303–307
Copyright © 2016 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/jmr