4146 J. Phys. Chem. A, Vol. 114, No. 12, 2010
Friederich et al.
(3) Burgin, M. O.; Heard, G. L.; Martell, J. M.; Holmes, B. E. J. Phys.
Chem. A 2001, 10, 1615.
(4) Heard, G. L.; Holmes, B. E. J. Phys. Chem. A 2001, 105, 1622.
(5) Burgin, M. O.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.;
Holmes, B. E. J. Phys. Chem. A 2007, 111, 2283.
(6) Zaluzhna, O.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.;
Holmes, B. E. J. Phys. Chem. A 2008, 112, 6090.
(7) Zaluzhna, O.; Simmons, J. G., Jr.; Setser, D. W.; Holmes, B. E. J.
Phys. Chem. A 2008, 112, 12117.
(8) Beaver, M. R.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.;
Holmes, B. E. J. Phys. Chem.A 2007, 111, 8445.
(9) Lisowski, C. E.; Duncan, J. R.; Heard, G. L.; Setser, D. W.; Holmes,
B. E. J. Phys. Chem. A 2008, 112, 441.
(10) Duncan, J. R.; Solaka, S. A.; Setser, D. W.; Holmes, B. E. J. Phys.
Chem. A 2010, 114, 794.
H2CH end of C2H5X, where the H subscript denotes the carbon
atom attached to the departing H atom. The calculated E0 values
for CH2BrCH2Br and CH2BrCH2Cl were very close to the
experimentally assigned values. Therefore, we also calculated
the E0 for HBr and HF elimination from CH2BrCH2F to
complete the series, and the values are 57.5 and 60.6, respec-
tively. The 3 kcal mol-1 difference is consistent with the limited
experimental data, which indicate that the HBr elimination rate
is faster than the HF elimination rate.44-46 The possibility of
Cl/Br, F/Cl, and F/Br interchange should be remembered when
considering the proposed reaction mechanisms for infrared-
multiphoton excitation of haloethanes.47-50
(11) Johnson, R. L.; Setser, D. W. J. Phys. Chem. 1967, 71, 4366.
(12) Ferguson, J. D.; Johnson, N. L.; Kekenes-Huskey, P. M.; Everett,
W. C.; Heard, G. L.; Setser, D. W.; Holmes, B. E. J. Phys. Chem. A 2005,
109, 4540.
(13) Toto, J. L.; Pritchard, G. O.; Kirtman, B. J. Phys. Chem. 1994, 98,
8357.
(14) McGrath, M. P.; Rowland, F. S. J. Phys. Chem. A 2002, 106, 8191.
(15) Jung, K.-H.; Kang, S. H.; Ro, C. U.; Tschuikow-Roux, E. J. Phys.
Chem. 1987, 91, 2354.
(16) Nguyen, T. T.; King, K. D.; Gilbert, G. G. J. Phys. Chem. 1983,
87, 494.
(17) (a) Tsang, W. J. Chem. Phys. 1964, 41, 2487. (b) Int. J. Chem.
Kinet 1970, 2, 311.
(18) References 11 and 15-17 give summaries of early pyrolysis studies
of C2H5Br.
(19) Butler, L. J.; Hintsa, E. J.; Shane, S. F.; Lee, Y. T. J. Chem. Phys.
1987, 86, 2051.
(20) Setser, D. W.; Siefert, E. E. J. Chem. Phys. 1972, 57, 3613–3623.
(21) Clark, W. G.; Setser, D. W.; Siefert, E. E. J. Phys. Chem. 1970,
74, 1670.
(22) Holmes, B. E.; Paisley, D. J.; Rakestraw, D. J.; King, E. E. Int.
J. Chem. Kinet 1986, 18, 639.
VI. Conclusions
The facile interchange of bromine and chlorine atoms located
on adjacent carbon atoms has been demonstrated by observation
of CH2ClCD2Br formation from vibrationally excited
CH2BrCD2Cl molecules that were generated by the recombina-
tion of CH2Br and CD2Cl radicals at room temperature. The
vinyl halide product ratios for loss of HCl/DCl and HBr/DBr
from CH2BrCD2Cl and CH2ClCD2Br were used to identify the
interchange reaction, which is 8 ( 2 times faster than the
elimination reactions. This information was combined with
observation of the HBr and HCl elimination reactions from
CH2BrCH2Br and CH2BrCH2Cl formed by radical combination
to assign threshold energies of 60 kcal mol-1 for HCl elimina-
tion, 58 kcal mol-1 for HBr elimination and =43 kcal mol-1
for Cl/Br interchange. These assignments are in good accord
with the threshold energies calculated from DFT with the B3PW
91/6-31G(d′,p′) method. The low threshold energy for Br/Cl
interchange suggests that this unimolecular process should be
expected whenever chlorine and bromine atoms are located on
adjacent carbon atoms in chlorobromoalkyl species. The transi-
tion state for Br/Cl interchange is very symmetric with the Br
and Cl atoms resting equidistant between the carbon atoms just
above and below the plane of the H2C-CH2 structure. Accord-
ing to the DFT calculations, the E0 for interchange of fluorine
and chlorine atoms in CH2FCH2Cl and fluorine and bromine
atoms in CH2FCH2Br are 60 and 57 kcal mol-1, respectively.
Based on comparison to data from the C2H5Br reaction, the
transition state calculated by DFT with the B3PW91/6-
31G(d′,p′) method for HBr elimination should be as reliable as
that for HCl elimination reactions. In fact, the transition states
for HCl and HBr elimination are very similar. The threshold
energies for CH2BrCH2Br and CH2ClCH2Br assigned here
follow the general trend of elevated threshold energies for 1,2-
dihaloethanes, relative to the corresponding ethyl halides.
(23) Zhu, L.; Simmons, J. G., Jr.; Burgin, M. O.; Setser, D. W.; Holmes,
B. E. J. Phys. Chem. A 2006, 110, 1506.
(24) Holmes, D. A.; Holmes, B. E. J. Phys. Chem. A 2005, 109, 10726.
(a) The calculated rate constant for 1,2-FH elimination listed in Table 2
for CF3CHFCH3 should be 2.8 ×104 s-1, and the calculated kinetic-isotope
effect for CF3CHFCD3 is 2.2 as quoted in the text.
(25) Clark, W. G.; Setser, D. W.; Dees, K. J. Am. Chem. Soc. 1971, 93,
5328.
(26) Hippler, H.; Troe, J.; Wendelken, H. J. J. Chem. Phys. 1983, 78,
6709.
(27) Seetula, J. A. Phys. Chem. Chem. Phys. 2003, 5, 849.
(28) Kerr, J. A.; Stocker, D. W. Standard Thermodynamic Properties
of Chemical Substances, In Handbook of Chemistry and Physics; Linde,
D. R., Jr., Ed; CRC Press: Boca Raton, Fl, 2007.
(29) (a) Seetula, J. A. J. Chem. Soc. Faraday Trans. 1996, 92, 3069.
(b) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.;
Mallard, W. G. J. Phys. Chem. Ref. Data. 1988, 17, 88.
(30) Marshall, P.; Srinivas, G. N.; Schwartz, M. J. Phys. Chem. A 2005,
109, 6379.
(31) (a) Tang, B.; Zhang, S.; Wang, Y.; Tang, Y.; Zhang, B. J. Chem.
Phys. 2005, 123, 164305. (b) Gripp, J.; Dreizler, H.; Schwarz, R. Z.
Naturforsch. 1985, 40a, 575.
(32) Wang, L. J. Phys. Chem. A 2008, 112, 4951.
(33) Wong, B. M.; Fadri, M. M.; Raman, S. J. Comput. Chem. 2007,
29, 481.
Acknowledgment. Financial support for this work was
provided by the US National Science Foundation under grants
CHE-0647582.
(34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kuden, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Bega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K. ; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratman, R. E.; Yazyev, O.; Austen, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewksi, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malik, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen.; W.; Wong, M. W.; Gonzalez, C. Pople, J. A.; Gaussian 03, ReVision
B.04; Gaussian, Inc, Pittsburg, PA, 2003.
Supporting Information Available: Tables of the molecular
and transition state structure vibrational frequencies, atomic
charges, overall moments of inertia, and the reduced moments
of inertia for the internal rotors calculated using B3PW91/6-
31G(d′,p′) for CH2BrCH2Cl, CH2BrCD2Cl, and CH2ClCD2Br.
This information is available free of charge via the Internet at
References and Notes
(35) Barker, J. R. Int. J. Chem. Kinet. 2001, 33, 232.
(36) Brown, C. T.; King, K. D.; Gilbert, R. G. Int. J. Chem. Kinet. 1987,
19, 851.
(1) Beaver, M. R.; Heard, G. L.; Holmes, B. E. Tetrahedron. Lett. 2003,
44, 7265.
(2) Dolbier, W. R., Jr.; Romelaeer, R.; Baker, J. M. Tetrahedron. Lett.
2002, 43, 8075.
(37) Gutman, D.; Braun, W.; Tsang, W. J. Chem. Phys. 1977, 67, 4291.