J. Zhang et al. / Tetrahedron Letters 54 (2013) 2261–2263
2263
Table 3
2. Nelson, J. D. In Practical Synthetic Organic Chemistry: Reactions, Principles, and
Techniques; Caron, S., Ed.; John Wiley & Sons: Hoboken, 2011. and references
therein.
Catalytic chlorination of chiral secondary alcoholsa
3. Bohlmann, R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 6, pp 203–223.
4. Young, W. G.; Caserio, F. F., Jr.; Brandon, D. D., Jr. J. Am. Chem. Soc. 1960, 82,
6163.
OH
Cl
SOCl2(1.1 equiv)/CaF2 (10 mol%)
70 °C
R
R
5. Goodwin, D. G.; Hudson, H. R. J. Chem. Soc. 1968, 1333.
6. Cowdrey, W. A.; Hughes, E. D.; Ingold, C. K.; Masterman, S.; Scott, A. D. J. Chem.
Soc. 1937, 1252.
7. (a) Wiley, G. A.; Hershkovitz, R. L.; Rein, B. M.; Chung, B. C. J. Am. Chem. Soc.
1964, 86, 964; (b) Caregg, P. J.; Johansson, R.; Samuelsson, B. Synthesis 1984,
168.
8. (a) Snyder, E. I. J. Org. Chem. 1972, 37, 1466; (b) Jones, L. A.; Sumner, C. E., Jr.;
Franzus, B.; Huang, T. T. S.; Snyder, E. I. J. Org. Chem. 1978, 43, 2281.
9. (a) Magid, R. M.; Fruchey, O. S.; Johnson, W. L. Tetrahedron Lett. 1977, 18, 2999;
(b) Magid, R. M.; Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem. 1979, 44,
359.
10. Drabowicz, J.; Luczak, J.; Mikolajczyk, M. J. Org. Chem. 1998, 63, 9565.
11. Mukaiyama, T.; Shoda, S.-I.; Watanabe, Y. Chem. Lett. 1977, 383.
12. Fujisawa, T.; Iida, S.; Sato, T. Chem. Lett. 1984, 1173.
½ ꢁ
a 2D5 (c 1.0 CHCl3)c
Entry
Substrate
Time (h)
Yieldb,c (%)
1
2
3
4
5
6
7
8
9
Et
3
3
4
4
5
2.5
3
3
3
82 (77)
86 (84)
87 (83)
82 (81)
89 (85)
68 (74)
71 (80)
74 (78)
65
ꢀ33.6 (ꢀ32.8)d
ꢀ28.9 (ꢀ28.7)e
ꢀ34.2 (ꢀ33.6)
ꢀ34.8 (ꢀ32.5)
ꢀ27.4 (ꢀ26.7)f
ꢀ32.9 (ꢀ33.8)g
ꢀ43.8 (ꢀ42.6)
ꢀ35.7 (ꢀ36.4)
ꢀ22.7h
Pr
iBu
Pentyl
Octyl
Bn
BnCH2
BnCH2CH2
Allyl
10
CH2@CHCH2CH2
3
68
ꢀ23.6i
13. Crosignani, S.; Nadal, B.; Li, Z.; Linclau, B. Chem. Commun. 2003, 260.
14. Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.
a
b
c
d
e
f
All the reactions are performed on a 20 mmol scale.
Isolated yield.
15. Denton, R. M.; An, J.; Adeniran, B. Chem. Commun. 2010, 46, 3025.
16. Hughes, E. D.; Ingold, C. K.; Whitfield, I. C. Nature 1941, 147, 206.
17. Hof, R. P.; Kellogg, R. M. J. Chem. Soc., Perkin Trans. 1 1995, 1247.
18. (a) He, Z. J.; Wang, Y. M.; Tang, C. C. Phosphorus, Sulfur Silicon 1997, 127, 59; (b)
Wojtowicz, J. A. U.S. 4,871,486, 1989 (Chem. Abstr. 1990, 112, 98835e).; (c)
Grosse, J.; Pieper, W.; Neumaier, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 542;
(d) Vasu, K.; Roy, N. K. Agric. Biol. Chem. 1983, 47, 2657.
Data in parenthesis are those obtained from SOCl2/pyridine system.20
½
½
½
½
½
½
a 2D0
a 2D0
a 2D0
ꢁ
ꢀ31.2 (neat).21
ꢁ
ꢀ38.1 (methanol).22
ꢁ
+33.0 (c 0.97, CH2Cl2) for S enantiomer.23
a 2D5
ꢁ
ꢀ20.0 (c 5, CHCl3)24 and ½a D16
ꢁ
ꢀ22.6 (neat).25
g
h
i
25
a
ꢁ
ꢀ5.1 (calculated value).26
ꢀ61.8 (calculated value).27
587:5
a 2D5
ꢁ
19. General procedure for the CaF2 catalyzed chlorodehydroxylation of chiral
secondary alcohols: To a mixture of thionyl chloride (1.6 mL, 22 mmol) and
CaF2 (156 mg, 2 mmol) was added dropwise the chiral secondary alcohols at
room temperature. After stirring at 70 °C for 2 h, the reaction mixture was
heated to refluxing or maintain the same temperature for the depicted time.
Then the reaction mixture was cooled to room temperature, neutralized with
saturated aqueous NaHCO3 solution, extracted with methylene chloride, and
dried over anhydrous MgSO4. After removal of solvent in vacuum, the crude
product was purified either by column chromatograph on silica gel or
distillation under reduced pressure. 2-Methyl-4-chloropentane: 1H NMR
(CDCl3, 300 MHz): d 0.91 (d, J = 6.6 Hz, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 1.40–
1.47 (m, 1 H), 1.51 (d, J = 6.6 Hz, 3 H), 1.64–1.74 (m, 1 H), 1.83–1.88 (m, 1 H),
OH
CO2Et
100 g
Cl
SOCl2 (1.1 equiv)/CaF2 (10 mol%)
70 °C 2h, then reflux
CO2Et
104 g
(90% yield, 97% ee)
Scheme 1. Large-scale preparation of (R)-ethyl 2-chloropropionate.
4.03–4.15 (m,
1
H). 2-Chloroheptane: 1H NMR (CDCl3, 400 MHz): 0.90 (t,
J = 6.4 Hz, 3 H), 1.26–1.35 (m, 4 H), 1.37–1.43 (m, 1 H), 1.45–1.50 (m, 1 H), 1.51
(d, J = 6.4 Hz, 3 H), 3.99–4.07 (m, 1 H). 1-(3-Chlorobutyl)benzene: 1H NMR
(CDCl3, 400 MHz): 1.54 (d, J = 6.4 Hz, 3 H), 1.99–2.06 (m, 2 H), 2.72–2.79 (m, 1
H), 2.83–2.90 (m, 1 H), 3.96–4.05 (m, 1 H). 7.21–7.22 (m, 3 Harom), 7.29–7.32
(m, 2 Harom). 1-(4-Chloropentyl)benzene: 1H NMR (CDCl3, 400 MHz): 1.50 (d,
J = 6.4 Hz, 3 H), 1.74–1.78 (m, 3 H), 1.82–1.89 (m, 1 H), 2.63–2.68 (m, 2 H),
4.01–4.09 (m, 1 H), 7.18–7.21 (m, 3 Harom), 7.27–7.31 (m, 2 Harom).
method, the great advantage of this chlorination system is that
only catalytic amount of CaF2 is sufficient to ensure the conversion
of the alcohol into the corresponding alkyl chloride with high opti-
cal purity in an SN2 fashion, avoiding the use of at least stoichiom-
etric environmentally hazardous pyridine. Moreover, the new
reaction described here offers a practical and inexpensive method
20. General procedure for the chlorodehydroxylation of chiral secondary alcohols with
Py/SOCl2: To
a solution of alcohol (0.02 mol) and pyridine (0.022 mol) in
for the synthesis of the key intermediate for the synthesis of
nyl- -glutamide.
L-ala-
chloroform (20 mL) was added dropwise a solution of SOCl2 (0.022 mol) in
chloroform (10 mL) at 0 °C. Then resulting mixture was heated to 60 °C until
the full conversion of the alcohol. After cooling to room temperature, the
reaction mixture was neutralized with saturated aqueous NaHCO3 solution.
The organic phase was separated and dried over anhydrous MgSO4. After
removal of the solvent under reduced pressure, the crude product was purified
either by column chromatograph on silica gel or distillation under reduced
pressure.
L
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (Nos. 20972070, 21121002), the National Basic research Pro-
gram of China (973 program 2010CB833300), Program for New
Century Excellent Talents in University (NCET-11-0265) and the
Key laboratory of Elemento-Organic Chemistry for generous finan-
cial support for our programs.
21. Stevens, C. L.; Morrow, D.; Lawson, J. J. Am. Chem. Soc. 1955, 77, 2341.
22. Chaudri, B. A.; Goodwin, D. G.; Hudson, H. R.; Barlett, L.; Scopes, P. M. J. Chem.
Soc. 1970, 1329.
23. Braddock, D. C.; Pouwer, R. H.; Burton, J. W.; Broadwith, P. J. Org. Chem. 2009,
74, 6042.
24. Masuda, S.; Nakajima, T.; Suga, S. Bull. Chem. Soc. Jpn. 1983, 56, 1089.
25. Gerrard, W.; Shepherd, B. D. J. Chem. Soc. 1953, 2069.
26. Levene, P. A.; Rothen, A. J. Chem. Phys. 1937, 5, 980.
References and notes
27. Friederang, A. W.; Tarbell, D. S. J. Org. Chem. 1968, 33, 3797.
1. (a)The Chemistry of Halides, Pseudohalides and Azides; Patai, S., Rappoport, Z.,
Eds.; John Wiley & Sons: Chichester, 1995; (b) Larock, R. C. Comprehensive
Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999. pp 689–702.