G. Srinu, P. Srihari / Tetrahedron Letters 54 (2013) 2382–2385
2385
(c) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188–5240; (d) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297–368.
2. (a) Blacker, A. J.; Roy, M.; Hariharan, S.; Upare, A.; Jagtap, A.; Wankhade, K.;
Misra, S. K.; Dube, D.; Bhise, S.; Vishwasrao, S.; Kadam, N. Org. Process Res. Dev.
2010, 14, 1364–1372; (b) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew. Chem.,
Int. Ed. 2008, 47, 6707–6711; (c) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker,
C. J.; Sheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Flkin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928–3932; (d) Diaz, D. D.; Punna, S.; Holzer, P.;
McPherson, A. K.; Sharpless, K. B.; Fokin, V. V.; Finn, M. G. J. Polym. Sci. Part A
2004, 42, 4392–4403; (e) Link, A. J.; Tirrell, D. A. J. Am. Chem. Soc. 2003, 125,
11164–11165; (f) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2943;
(g) Chen, Y. K.; Lurain, A. E.; Wash, P. J. J. Am. Chem. Soc. 2002, 124, 12225–
12231; (h) Brosius, A. D.; Overman, L. E.; Schwink, L. J. Am. Chem. Soc. 1999, 121,
700–709; (i) Burgess, K.; Liu, L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758–4763; (j)
Kondo, H.; Nakai, H.; Goto, T. Tetrahedron 1973, 29, 1801–1806.
Tetrahedron Lett. 2000, 41, 4193–4196; (f) Safi, M.; Sinou, D. Tetrahedron Lett.
1991, 32, 2025–2028; (g) Safi, M.; Fahrang, R.; Sinou, D. Tetrahedron Lett. 1990,
31, 527–530; (h) Murahashi, S.-I.; Tanigawa, Y.; Imada, Y.; Taniguchi, Y.
Tetrahedron Lett. 1986, 27, 227–230; (i) Tomassy, B.; Zwierzak, A. Synth.
Commun. 1998, 1201–1214; (j) Murahashi, S. I.; Taniguchi, Y.; Imada, Y.;
Tanigawa, Y. J. Org. Chem. 1989, 54, 3292–3303.
6. For few papers towards azide preparation from halides see (a) Van Kalkeren, H.
A.; Jorick, J.; Floris, P. J. B.; Floris, L. R.; Delft, V. Adv. Synth. Catal. 2012, 354,
1417–1421; (b) Manjunath, L.; Pradeep, D.; Prabhu, K. Ramaiah Org. Biomol.
Chem. 2012, 10, 2753–2759; (c) Putz, M. V.; Lazea, M.; Sandjo, L. P. Molecules
2011, 16, 6603–6620; (d) McNulty, J.; Keskar, K.; Ramesh, V. Chem. A Eur. J.
2011, 17, 14727–14730; (e) Spangenberg, T.; Breit, B.; Mann, A. Org. Lett. 2009,
11, 261–264; (f) Shen, J.; Woodward, R.; JamesPatrick, K.; George, W. P.; Fang,
L.; Duxin, S.; Liu, X.; Chen, M. J. Med. Chem. 2008, 51, 7417–7427; (g) Banert, K.;
Hagedorn, M.; Liedtke, C.; Melzer, A.; Schoeffler, C. Eur. J. Org. Chem. 2000, 257–
268; (h) Koziara, A.; Zwierzak, A. Synthesis 1992, 11, 1063–1065; (i) Hung, R. R.;
Straub, J. A.; Whitesides, G. M. J. Org. Chem. 1991, 56, 3849–3855.
7. (a) Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Yadav, J. S. Synth. Commun. 2008, 38,
1389–1397; (b) Srihari, P.; Shyam Sunder Reddy, J.; Bhunia, D. C.; Mandal, S. S.;
Yadav, J. S. Synth. Commun. 2008, 38, 1448–1455; (c) Srihari, P.; Shyam Sunder
Reddy, J.; Mandal, S. S.; Satyanarayana, K.; Yadav, J. S. Synthesis 2008, 1853–
1860; (d) Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Yadav, J. S. Synlett 2008, 1045–
1049; (e) Srihari, P.; Sridhar, P.; Bhunia, D. C.; Shyam Sunder Reddy, J.; Mandal,
S. S.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120–8124; (f) Yadav, J. S.; Bhunia,
D. C.; Vamshikrishna, K.; Srihari, P. Tetrahedron Lett. 2007, 48, 8306–8310.
8. The amine derivative obtained from this product was utilized as tether group in
the synthesis of new class of macrocyclic antagonists. see Marsault, E.;
Hoveyda, H. R.; Peterson, M. L.; Saint-Louis, C.; Landry, A.; Vezina, M.;
Ouellet, L.; Wang, Z.; Ramaseshan, M.; Beaubien, S.; Benakli, K.; Beauchemin,
S.; Deziel, R.; Peeters, T.; Fraser, G. L. J. Med. Chem. 2006, 49, 7190–7197.
9. (a) Amantini, D.; Fingguelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66,
6734–6737; (b) Sinol, D.; Emziane, M. Synthesis 1986, 1045–1046.
10. General procedure for preparation of allylic azide: To the solution of diol
(0.84 mmol) in anhydrous CH2Cl2 (15 mL) was added TMSN3 (1.26 mmol),
followed by BF3ꢀEt2O (20 mol %) at 0 °C. The reaction mixture was stirred at
room temperature for complete consumption of the starting material (see
Table 1). The reaction mixture was diluted with aq sat. NaHCO3 solution
(10 mL) and extracted with CH2Cl2 (2 ꢁ 15 mL). The organic layer was dried
over anhydrous Na2SO4, concentrated under vacuum and purified by silica gel
column chromatography with ethylacetate/hexane (1:9) as an eluent to furnish
the allylic azide.
11. LCMS analysis was carried out using Agilent technologies 1100 series HPLC
which is hyphenated with LCMSD ion trap mass spectrometer. HPLC conditions
include Discovery C8 column of length 250 ꢁ 4.6 mm, 5 microns with mobile
phase 75% CH3CN in water (0.1% formic acid) with PDA detector at 268 nm.
Mass conditions include positive ion polarity with ESI ion source, dry gas
temperature at 300 °C and nebulizer press 30 psi with dry gas (nitrogen) flow
rate of 8.0 L/min.
3. (a) Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-
H. J. Am. Chem. Soc. 2003, 125, 9588–9589; (b) Rostovtsev, V. V.; Green, L. G.;
Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599; (c)
Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New
York, 1984; pp 1–7176.
4. For azide preparation from free hydroxyl groups see (a) Rokade, B. V.; Malekar,
S. K.; Prabhu, K. R. Chem. Commun. 2012, 48, 5506–5508; (b) Kitamura, K.;
Tatsuya, K.; Yano, M.; Okauchi, O. Synlett 2012, 23, 1335–1338; (c) Rueping, M.;
Vila, C.; Uria, U. Org. Lett. 2012, 14, 768–771; (d) Jaganathan, A.; Garzan, A.;
Whitehead, D. C.; Staples, R. J.; Babak, B. Angew. Chem., Int. Ed. 2011, 50, 2593–
2596; (e) Amarnath, C.; Surjendu, D.; Sudeshna, S.; Adarsh, N. N.; Amitabha, S.
Organometallics 2010, 29, 6619–6622; (f) Besset, C.; Chambert, S.; Fenet, B.;
Queneau, Y. Tetrahedron Lett. 2009, 50, 7043–7047; (g) Hajipour, A. R.; Rajaei,
A.; Ruoho, A. E. Tetrahedron Lett. 2009, 50, 708–711; (h) Cozzi, P. G.; Zoli, L.
Angew. Chem., Int. Ed. 2008, 47, 4162–4166; (i) Sreedhar, B.; Reddy, P. S.; Kumar,
N. S. Tetrahedron Lett. 2006, 47, 3055–3058; (j) Jayanthi, A.; Gumaste, V. K.;
Deshmukh, A. R. A. S. Synlett 2004, 979–982; (k) Vidya Sagar Reddy, G.; Venkat
Rao, G.; Subramanyam, R. V. K.; Iyengar, D. S. Synth. Commun. 2000, 30, 2233–
2237; (l) Malkov, A. V.; Spoor, P.; Vinader, V.; Kocovsky, P. J. Org. Chem. 1999,
64, 5308–5311; (m) Hughes, D. L.; Organic Reactions Hoboken, NJ, United
States: John Wiley & Sons, 42, No pp. given. 1992.; (n) Sampath Kumar, H. M.;
Subba Reddy, B. V.; Anjaneyulu, S.; Yadav, J. S. Tetrahedron Lett. 1998, 39, 7385–
7388; (o) Viaud, M. C.; Patrick, R. Synthesis 1990, 130–132; (p) Tsuji, J.
Transition Metal Reagents and Catalysis; Wiley-VCH: Weinheim, 2000;
(q)Organic Azides Syntheses and Applications; Brase, S., Banert, K., Eds.; John
Wiley & Sons Ltd: Chichester, 2010; (r) Trost, B. M.; Cook, G. C. Tetrahedron Lett.
1996, 37, 7485–7488; (s) Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117,
10143–10144.
5. For azide preparation from derivated hydroxy groups see (a) Suzuka, T.;
Kosuke, K.; Takuya, N. Polymers 2011, 3, 621–639; (b) Zhou, W.; Xu, J.; Liangren,
Z.; Jiao, N. Synlett 2011, 887–890; (c) Fukuzawa, S.; Shimizu, E.; Kikuchi, S.
Synlett 2007, 2436–2438; (d) Uozumi, Y.; Suzuka, T.; Kawade, R.; Takenaka, H.
Synlett 2006, 2109–2113; (e) Young Soo, G.; Shim, J. G.; Yamamoto, Y.