114
B.A. Babgi et al. / Journal of Organometallic Chemistry 730 (2013) 108e115
Table 3
Calculated and observed NLO data for 1, 2, Ru(C^CPh)(dppe)(
h
5-C5H5) and Ru(4-C^CC6H4NO2)(dppe)(
h
5-C5H5).a
Complex
bxxx
bxyy
bxzz
1.0
byyy
byzz
byxx
bzzz
1.1
1.0
ꢃ1.1
0.6
bzxx
bzyy
btot
19.0
158.2
13.8
b0,exp
Ru(C^CPh)(dppe)(
Ru(4-C^CC6H4NO2)(dppe)(
Ru(C^CPh)(dppf)(
Ru(4-C^CC6H4NO2)(dppf)(
h
5-C5H5)
ꢃ11.8
ꢃ1.6
ꢃ8.0
4.1
ꢃ0.2
2.7
0.4
13.2
55.3
9.5
7.7
36.0
6.4
4.7
6.9
0.0
3.6
h
5-C5H5)
ꢃ114.5
ꢃ8.3
ꢃ19.5
ꢃ0.7
ꢃ4.7
161
72
165
h
5-C5H5) (2)
0.0
ꢃ0.8
h
5-C5H5) (1)
ꢃ109.2
ꢃ14.2
ꢃ8.6
2.5
3.5
48.9
36.7
148.7
a
Calculated and observed
b
in units of 10ꢃ30 esu; btot determined from equation (1); b0,exp evaluated using equation (2) (see Table 1).
h
ih
i
work. M.G.H. is an ARC Australian Professorial Fellow, M.P.C. is an
ARC Australian Research Fellow, and I.A. was a Postdoctoral Fellow
of FWO-Vlaanderen.
b0;exp
¼
bexp 1 ꢃ ð
l
max=1064Þ2 1 ꢃ ð2
l
max=1064Þ2
(2)
Addition of the nitro group on the axial phenylalkynyl fragment
in both complexes 1 and Ru(4-C^CC6H4NO2)(dppe)(h
5-C5H5) re-
Appendix A. Supplementary material
sults in an increase in the calculated btot values of between 135 and
140 ꢁ 10ꢃ30 esu. While the same level of enhancement is not evi-
dent in the experimental data for the dppf complex (1), a significant
increase of 93 ꢁ 10ꢃ30 esu in b0,exp is nonetheless observed, which
is consistent with other related group 8 metal alkynyl systems in
which a nitro substituent has been introduced on the axial phe-
nylalkynyl group [8].
CCDC 899522 (1) and CCDC 899523 (2) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Although none of the four complexes possess any symmetry,
a pseudo mirror plane exists in the xz plane, bisecting the Ru centre,
C2Ph/C2C6H4NO2 group and the Cp ring. Consequently, the calcu-
lated values for byyy and byzz are close to zero. For complexes 1 and
References
[1] N.J. Long, Angew. Chem., Int. Ed. Engl. 34 (1995) 21.
[2] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. Persoons, J. Mater. Chem. 7
(1997) 2175.
[3] J. Heck, S. Dabek, T. Meyer-Friedrichsen, H. Wong, Coord. Chem. Rev. 190e192
(1999) 1217.
[4] J.P. Morrall, G.T. Dalton, M.G. Humphrey, M. Samoc, Adv. Organomet. Chem. 55
(2007) 61.
[5] M.L.H. Green, S.R. Marder, M.E. Thompson, J.A. Bandy, D. Bloor, P.V. Kolinsky,
R.J. Jones, Nature 330 (1987) 360.
[6] T.B. Marder, G. Lesley, Z. Yuan, H.B. Fyfe, P. Chow, G. Stringer, I.R. Jobe,
N.J. Taylor, I.D. Williams, S.K. Kurtz, in: S.R. Marder (Ed.), Materials for Non-
linear Optics, Chemical Perspectives, ACS, Washington D.C., 1991, p. 605.
[7] P. Nguyen, G. Lesley, T.B. Marder, I. Ledoux, J. Zyss, Chem. Mater. 9 (1997) 406.
[8] C.E. Powell, M.G. Humphrey, Coord. Chem. Rev. 248 (2004) 725.
[9] A.M. McDonagh, I.R. Whittall, M.G. Humphrey, D.C.R. Hockless, B.W. Skelton,
A.H. White, J. Organomet. Chem. 523 (1996) 33.
[10] A.M. McDonagh, M.P. Cifuentes, I.R. Whittall, M.G. Humphrey, M. Samoc,
B. Luther-Davies, D.C.R. Hockless, J. Organomet. Chem. 526 (1996) 99.
[11] R.H. Naulty, A.M. McDonagh, I.R. Whittall, M.P. Cifuentes, M.G. Humphrey,
S. Houbrechts, J. Maes, A. Persoons, G.A. Heath, D.C.R. Hockless, J. Organomet.
Chem. 563 (1998) 137.
[12] S.K. Hurst, M.G. Humphrey, J.P. Morrall, M.P. Cifuentes, M. Samoc, B. Luther-
Davies, G.A. Heath, A.C. Willis, J. Organomet. Chem. 670 (2003) 56.
[13] K.A. Green, M.P. Cifuentes, M. Samoc, M.G. Humphrey, Coord. Chem. Rev. 255
(2011) 2025.
[14] K.A. Green, M.P. Cifuentes, M. Samoc, M.G. Humphrey, Coord. Chem. Rev. 255
(2011) 2530.
Ru(4-C^CC6H4NO2)(dppe)(h
5-C5H5), the presence of the nitro
substituent provides a dominant donoreacceptor pathway from
the Ru centre along the phenylalkynyl axis for charge to be delo-
calized. This charge transfer pathway lies approximately in the xz
plane but has its major component along the molecular x axis.
Consequently, for these two complexes the diagonal bxxx compo-
nent contributes most to btot, followed next by the non-diagonal
bxxy and bxxz components which contribute less than half of the
magnitude of bxxx. This picture is confirmed from the orbital con-
tributions given in Table 2. The lowest energy band in these com-
plexes is dominated by a single transition, 182a / 183a and
219a / 222a, for Ru(4-C^CC6H4NO2)(dppe)(
respectively, which involves an excitation from an orbital of Ru
d þ
C2 character to a p* orbital localized on the C2C6H4NO2 unit.
While the btot values for the unsubstituted complexes 2 and
Ru(C^CPh)(dppe)(
5-C5H5) are significantly smaller, due to the
absence of a strong donoreacceptor pathway, a similar trend is
observed in the calculated tensors in that bxxx bxxy and bxxz are
h
5-C5H5) and 1,
p
h
b
,
major contributors to btot
.
[15] I.R. Whittall, M.G. Humphrey, D.C.R. Hockless, B.W. Skelton, A.H. White, Or-
ganometallics 14 (1995) 3970.
4. Conclusion
[16] I.R. Whittall, M.G. Humphrey, A. Persoons, S. Houbrechts, Organometallics 15
(1996) 1935.
[17] I.R. Whittall, M.G. Humphrey, M. Samoc, J. Swiatkiewicz, B. Luther-Davies,
Organometallics 14 (1995) 5493.
[18] I.R. Whittall, M.P. Cifuentes, M.G. Humphrey, B. Luther-Davies, M. Samoc,
S. Houbrechts, A. Persoons, G.A. Heath, D.C.R. Hockless, J. Organomet. Chem.
549 (1997) 127.
[19] C.E. Powell, M.P. Cifuentes, A.M. McDonagh, S. Hurst, N.T. Lucas, C.D. Delfs,
R. Stranger, M.G. Humphrey, S. Houbrechts, I. Asselberghs, A. Persoons,
D.C.R. Hockless, Inorg. Chim. Acta 352 (2003) 9.
[20] M.I. Bruce, I.R. Butler, W.R. Cullen, G.A. Koutsantonis, M.R. Snow,
E.R.T. Tiekink, Aust. J. Chem. 41 (1988) 963.
[21] S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis (1980) 627.
[22] M. Sato, M. Sekino, J. Organomet. Chem. 444 (1993) 185.
[23] Z. Otwinowski, W. Minor, Methods Enzymol. 276 (1997) 307.
[24] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
[25] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[26] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl.
Crystallogr. 42 (2009) 339.
The present studies have explored the dppf analogues of pre-
viously reported dppe-containing complexes as possible NLO ma-
terials. Complexes 1 and 2 show comparable or greater quadratic
NLO merit than the dppe examples, but with additional redox-
switching possibilities due to the presence in 1 and 2 of the
electro-active ferrocene-containing diphosphine. Both the linear
optical and quadratic NLO observations for 1 and 2 have been
rationalized by TD-DFT studies, comparison also being drawn with
their dppe-containing cousins. The utility of dppf and other
ferrocene-containing species as redox-active auxiliary ligands
facilitating the switching of NLO properties is the subject of ongo-
ing studies, and will be reported shortly.
[27] P.v.d. Sluis, A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) 194.
[28] K. Clays, A. Persoons, Phys. Rev. Lett. 66 (1991) 2980.
[29] K. Clays, A. Persoons, Rev. Sci. Instrum. 63 (1992) 3285.
[30] E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt,
C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis,
M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona,
S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning,
Acknowledgements
We thank the Australian Research Council, the Fund for Scien-
tific Research-Flanders (FWO-Vlaanderen; FWO G.0312.08), and the
Katholieke Universiteit Leuven (GOA/2011/03) for support of this