ChemComm
Communication
benzylic C–H substrates with unmodified amines. Various
amination products were obtained with good to excellent yields
using TBHP (70% in water) as an environmentally benign
oxidant. This method affords a facile metal-free approach for
synthesis of imidazole and purine nucleoside derivatives. The
possible mechanistic pathway is also proposed on the basis of
control experiments.
Scheme 2 A gram scale amination of p-xylene. Reaction conditions: 1a (75 mmol),
2a (15 mmol), n-Bu4NI (1.5 mmol), TBHP (45 mmol, 70% in water), 75 1C, 12 h, air.
We gratefully acknowledge the National Natural Science
Foundation of China (21172106, 21074054), the National
Basic Research Program of China (2010CB923303) and the
Research Fund for the Doctoral Program of Higher Educa-
tion of China (20120091110010) for their financial support.
J. Xie thanks the academic scholarship for doctoral candidates
of MOE.
Notes and references
1 (a) R. Hili and A. K. Yudin, Nat. Chem. Biol., 2006, 2, 284;
(b) T. Henkel, R. M. Brunne, H. M. Ller and F. Reiche, Angew. Chem.,
Int. Ed., 1999, 38, 643.
2 For recent reviews of C–H bonds amination, see: (a) H. M. L. Davies
and J. R. Manning, Nature, 2008, 451, 417; (b) F. Collet, C. Lescot and
P. Dauban, Chem. Soc. Rev., 2011, 40, 1926; (c) F. Collet, R. H. Dodd
and P. Dauban, Chem. Commun., 2009, 5061; (d) R. Samanta and
A. P. Antonchick, Synlett, 2012, 809.
Scheme 3 Plausible mechanism.
3 For recent review see: M. Uyanik and K. Ishihara, ChemCatChem,
2012, 4, 177.
could also undergo the oxidation reaction to provide the
desired products with high efficiency (Table 3, 3v–w).
To demonstrate the practicability of this protocol, the
n-Bu4NI-catalyzed reaction was scaled-up to the gram scale.
A gram scale amination of p-xylene was easily performed under
standard reaction conditions to furnish the desired product in
88% isolated yield (Scheme 2).
To probe the reaction mechanism, several control experi-
ments were conducted (see ESI†). When a radical inhibitor,
BHT (2,6-di-tert-butyl-4-methylphenol), was introduced into the
reaction mixture, the formation of the desired product 3e
was completely suppressed. Furthermore, replacing n-Bu4NI
with I2 led to no product. Interestingly, the reaction pro-
ceeded smoothly by the combined use of n-Bu4NOH and I2,
affording the desired product 3e in 76% yield. Based on the
similar results reported by Yu et al.5e and Ishihara et al.,5a we
suppose that the active hypoiodite [n-Bu4N]+[IO]À or iodite
[n-Bu4N]+[IO2]À plays an important role in the sp3 C–H amine
reactions. Additionally, the benzyl radical intermediate was
trapped by a radical scavenger, TEMPO (2,2,6,6-tetra-methyl-
piperidine-N-oxyl), and the oxyamination product was isolated
in 62% yield.
Based on the above results, a plausible mechanism is
proposed in Scheme 3. Initially, n-Bu4NI is oxidized by TBHP
to generate the active iodine species ammonium hypoiodite 4
or iodite 5 (Scheme 3a). Subsequently 4 or 5 induces the
homolysis of a benzyl C–H bond to give the benzyl radical
A,5e which is then oxidized by active iodine species to form the
benzyl cation B (Scheme 3b).6e,8 Finally, the nucleophilic reac-
tion of amine 2 with the benzyl cation B forms the desired
product 3 (Scheme 3c).
4 For selected examples see: (a) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu
and X. Wan, Angew. Chem., Int. Ed., 2012, 51, 3231; (b) W. Mai,
H. Wang, Z. Li, J. Yuan, Y. Xiao, L. Yang, P. Mao and L. Qu, Chem.
Commun., 2012, 48, 10117; (c) B. Tan, N. Toda and C. F. Barbas,
Angew. Chem., Int. Ed., 2012, 51, 12538; (d) L. Li, J. Huang, H. Li,
L. Wen, P. Wang and B. Wang, Chem. Commun., 2012, 48, 5187;
(e) J. Xie, H. Jiang, Y. Cheng and C. Zhu, Chem. Commun., 2012,
48, 979; ( f ) W. Wei, C. Zhang, Y. Xu and X. Wan, Chem. Commun.,
2011, 47, 10827; (g) L. Ma, X. Wang, W. Yu and B. Han, Chem.
Commun., 2011, 47, 11333; (h) T. Froehr, C. P. Sindlinger,
U. Kloeckner, P. Finkbeiner and B. J. Nachtsheim, Org. Lett., 2011,
13, 3754.
5 (a) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara, Science, 2010,
328, 1376; (b) M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew.
Chem., Int. Ed., 2011, 50, 5331; (c) J. Huang, L. Li, H. Li, E. Husan,
P. Wang and B. Wang, Chem. Commun., 2012, 48, 10204; (d) E. Shi,
S. Chen, S. Chen, H. Hu, S. Chen, J. Zhang and X. Wan, Org. Lett.,
2012, 14, 3384; (e) J. Feng, S. Liang, S. Chen, J. Zhang, S. Fu and X. Yu,
Adv. Synth. Catal., 2012, 354, 1287; ( f ) L. Chen, E. Shi, Z. Liu, S. Chen,
W. Wei, H. Li, K. Xu and X. Wan, Chem.–Eur. J., 2011, 17, 4085.
6 (a) Z. Ni, Q. Zhang, T. Xiong, Y. Zheng, Y. Li, H. Zhang, J. Zhang and
´
Q. Liu, Angew. Chem., Int. Ed., 2012, 51, 1244; (b) A. Iglesias,
´
´
˜
R. Alvarez, A. R. de Lera and K. Muniz, Angew. Chem., Int. Ed., 2012,
51, 2225; (c) T. Xiong, Y. Li, Y. Lv and Q. Zhang, Chem. Commun.,
2010, 46, 6831; (d) H. J. Kim, J. Kim, S. H. Cho and S. Chang, J. Am.
Chem. Soc., 2011, 133, 16382; (e) Q. Xia, W. Chen and H. Qiu, J. Org.
Chem., 2011, 76, 7577.
7 Transition-metal-catalyzed benzylic C–H amination via nitrene inser-
tion see: (a) S. M. Paradine and M. C. White, J. Am. Chem. Soc., 2012,
134, 2036; (b) A. N. Rder, S. A. Warren, E. Herdtweck, S. M. Huber and
T. Bach, J. Am. Chem. Soc., 2012, 134, 13524; (c) M. Ichinose,
H. Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida and T. Katsuki,
Angew. Chem., Int. Ed., 2011, 50, 9884; (d) A. N. Rder, P. Herrmann,
E. Herdtweck and T. Bach, Org. Lett., 2010, 12, 3690; (e) D. A. Powell
and H. Fan, J. Org. Chem., 2010, 75, 2726; ( f ) H. Lu, V. Subbarayan,
J. Tao and X. P. Zhang, Organometallics, 2010, 29, 389; (g) S. Wiese,
Y. M. Badiei, R. T. Gephart, S. Mossin, M. S. Varonka, M. M. Melzer,
K. Meyer, T. R. Cundari and T. H. Warren, Angew. Chem., Int. Ed.,
2010, 49, 8850; (h) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino,
F. W. Heinemann, T. R. Cundari and T. H. Warren, Angew. Chem., Int.
Ed., 2008, 47, 9961.
In conclusion, we have reported a novel n-Bu4NI catalyzed
operationally simple method for the oxidative coupling of
8 (a) Y. Li, B. Li, X. Lu, S. Lin and Z. Shi, Angew. Chem., Int. Ed., 2009,
48, 3817; (b) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.