M. Rachwalski et al. / Tetrahedron: Asymmetry 24 (2013) 421–425
425
Ligand 8a (colorless crystals, 0.58 g, 96%), mp = 54–55 °C; 1H
4.4. Asymmetric addition of phenylethynylzinc to aldehydes—
general procedure9
NMR (CDCl3): d = 1.14 (d, J = 5.4 Hz, 3H), 1.47 (d, J = 6.4 Hz, 1H),
1.58 (d, J = 3.8 Hz, 1H), 1.65–1.69 (m, 1H), 3.46 (d, J = 12.6 Hz,
1H), 3.57 (d, J = 12.6 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.73 (d,
J = 12.0 Hz, 1H), 7.13–7.15 (m, 1H), 7.26–7.29 (m, 1H), 7.32–7.34
(m, 1H), 7.39–7.41 (m, 1H); 13C NMR (CDCl3): d = 17.9 (CH3), 34.5
(CH), 35.0 (CH2), 63.7 (CH2), 64.5 (CH2), 127.9 (CHar), 128.3 (CHar),
129.8 (CHar), 130.2 (CHar), 137.7 (Cq ar), 141.4 (Cq ar); MS (CI): m/z
177 (M+H); HRMS (CI): calcd for C11H15NO: 177.0429; found
177.0428.
To a solution of ligand 8a–b or 9a–c (0.2 mmol) in THF (5 mL),
was added a solution of diethylzinc (1.4 mL, 1.4 mmol, 1.0 M in
hexane) at room temperature under argon. After the mixture was
stirred at ambient temperature for 30 min, phenylacetylene
(0.154 mL, 1.4 mmol) was added, and stirring was continued for
another 30 min. The solution was cooled to 0 °C (ice bath) and trea-
ted with the corresponding aldehyde (1 mmol). The resultant mix-
ture was stirred for 2 h at 0 °C and then overnight at room
temperature. After completion of the reaction (TLC), it was
quenched by 5% aqueous HCl. The resulting mixture was extracted
with diethyl ether and the combined organic phases were washed
with brine, dried over anhydrous MgSO4 and the solvent was re-
moved in vacuo. The residue was purified by column chromatogra-
phy (silica gel, ethyl acetate with hexane in gradient) to afford the
corresponding products 11a–e. Yields, specific rotations, enantio-
meric excess values, and absolute configurations of the products
11a–e are shown in Table 4. The spectroscopic data are in full
agreement with those reported in the literature.4,8,9,24
Ligand 8b (colorless crystals, 0.574 g, 94%), mp = 70–71 °C; 1H
NMR (CDCl3): d = 0.75 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H),
1.21–1.27 (m, 1H), 1.37–1.40 (m, 1H), 1.47 (d, J = 6.6 Hz, 1H),
1.69 (d, J = 3.8 Hz, 1H), 3.34 (d, J = 12.2 Hz, 1H), 3.67 (d,
J = 12.2 Hz, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.77 (d, J = 12.0 Hz, 1H),
7.13–7.14 (m, 1H), 7.26–7.29 (m, 1H), 7.31–7.34 (m, 1H), 7.40–
7.41 (m, 1H); 13C NMR (CDCl3): d = 19.4 (CH3), 19.8 (CH3), 30.9
(CH), 32.7 (CH2), 46.7 (CH), 63.9 (CH2), 64.6 (CH2), 127.8 (CHar),
128.3 (CHar), 129.9 (CHar), 130.2 (CHar), 137.8 (Cq ar), 141.3 (Cq
ar); MS (CI): m/z 206 (M+H); HRMS (CI): calcd for C13H19NO:
206.0358; found 206.0357.
Ligand 9a (colorless crystals, 0.54 g, 94%), mp = 42–43 °C; 1H
NMR (CDCl3): d = 1.23 (d, J = 5.4 Hz, 3H), 1.47 (d, J = 6.4 Hz, 1H),
1.63–1.67 (m, 1H), 1.70 (d, J = 4.2 Hz, 1H), 3.60 (d, J = 13.8 Hz,
1H), 3.63 (d, J = 13.8 Hz, 1H), 6.78–6.81 (m, 1H), 6.88–6.92 (m,
2H), 7.18–7.21 (m, 1H); 13C NMR (CDCl3): d = 17.7 (CH3), 34.8
(CH), 35.3 (CH2), 63.1 (CH2), 116.6 (CHar), 118.9 (CHar), 122.9 (CHar),
127.9 (CHar), 128.6 (CHar), 157.6 (Cq ar); MS (CI): m/z 164 (M+H);
HRMS (CI): calcd for C10H13NO: 164.1163; found 164.1161.
Ligand 9b (colorless crystals, 0.526 g, 92%), mp = 28–29 °C; 1H
NMR (CDCl3): d = 0.92 (d, J = 3.6 Hz, 3H), 0.93 (d, J = 3.6 Hz, 3H),
1.38–1.44 (m, 3H), 1.79 (d, J = 3.6 Hz, 1H), 3.74 (d, J = 13.8 Hz,
1H), 3.82 (d, J = 13.8 Hz, 1H), 6.78–6.81 (m, 1H), 6.88–6.92 (m,
2H), 7.18–7.21 (m, 1H); 13C NMR (CDCl3): d = 19.3 (CH3), 19.9
(CH3), 30.6 (CH), 32.5 (CH2), 46.9 (CH), 63.4 (CH2), 116.6 (CHar),
118.9 (CHar), 123.1 (CHar), 127.9 (CHar), 128.6 (CHar), 157.6 (Cq
ar); MS (CI): m/z 192 (M+H); HRMS (CI): calcd for C12H17NO:
192.0256; found 192.0257.
Acknowledgements
Financial support by the National Science Centre (NCN), Grant
No. 2012/05/D/ST5/00505 for M.R., is gratefully acknowledged.
The scientific award of the Foundation of University of Łódz for
´
M.R. is also acknowledged.
References
1. Liu, R.; Bai, X.; Zhang, Z.; Zi, G. Appl. Organomet. Chem. 2008, 22, 671–675.
2. Dabiri, M.; Salehi, P.; Kozehgary, G.; Heydari, S.; Heydari, A.; Esfandyari, M.
Tetrahedron: Asymmetry 2008, 19, 1970–1972.
3. Gou, S.; Judeh, Z. M. A. Tetrahedron Lett. 2009, 50, 281–283.
4. Zhang, C.-H.; Yan, S.-J.; Pan, S.-Q.; Huang, R.; Lin, J. Bull. Korean Chem. Soc. 2010,
31, 869–873.
5. Kang, Y.-F.; Liu, L.; Wang, R.; Yan, W.-J.; Zhou, Y.-F. Tetrahedron: Asymmetry
2004, 15, 3155–3159.
Ligand 9c (colorless crystals, 0.496 g, 86%), mp = 28–29 °C; 1H
NMR (CDCl3): d = 0.92 (d, J = 3.6 Hz, 3H), 0.93 (d, J = 3.6 Hz, 3H),
1.38–1.44 (m, 3H), 1.79 (d, J = 3.6 Hz, 1H), 3.74 (d, J = 13.8 Hz,
1H), 3.82 (d, J = 13.8 Hz, 1H), 6.78–6.81 (m, 1H), 6.88–6.92 (m,
2H), 7.18–7.21 (m, 1H); 13C NMR (CDCl3): d = 19.3 (CH3), 19.9
(CH3), 30.6 (CH), 32.5 (CH2), 46.9 (CH), 63.4 (CH2), 116.6 (CHar),
118.9 (CHar), 123.1 (CHar), 127.9 (CHar), 128.6 (CHar), 157.6 (Cq
ar); MS (CI): m/z 192 (M+H); HRMS (CI): calcd for C12H17NO:
192.0256; found 192.0257.
6. Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131–6141.
7. Rachwalski, M.; Kwiatkowska, M.; Drabowicz, J.; Kłos, M.; Wieczorek, W. M.;
Szyrej, M.; Sieron´ , L.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2008, 19, 2096–
2101.
8. Les´niak, S.; Rachwalski, M.; Sznajder, E.; Kiełbasin´ ski, P. Tetrahedron:
Asymmetry 2009, 20, 2311–2314.
9. Rachwalski, M.; Les´niak, S.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2010, 21,
2687–2689.
10. Rachwalski, M.; Les´niak, S.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2010, 21,
1890–1892.
´
´
11. Rachwalski, M.; Lesniak, S.; Sznajder, E.; Kiełbasinski, P. Tetrahedron:
Asymmetry 2009, 20, 1547–1549.
12. Rachwalski, M.; Les´niak, S.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2011, 22,
1087–1089.
4.3. Asymmetric addition of diethylzinc to aldehydes—general
procedure8
13. Rachwalski, M.; Les´niak, S.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2011, 22,
1325–1327.
14. Rachwalski, M.; Leenders, T.; Kiełbasin´ ski, P.; Les´niak, S.; Rutjes, F. P. J. T., Org.
Chiral catalysts 8a–b or 9a–c (0.1 mmol) in dry toluene (5 mL)
were placed in a round-bottomed flask. The mixture was cooled
to 0 °C and a solution of diethylzinc (1.0 M solution in hexane,
3 mmol) was then added under argon. After stirring for 30 min,
an aldehyde (1 mmol) was added at 0 °C and the mixture was stir-
red at room temperature overnight. Next, 5% aqueous solution of
HCl was added, the layers were separated and the aqueous phase
was extracted with diethyl ether (4ꢁ). The combined organic lay-
ers were washed with brine (10 mL) and dried over anhydrous
MgSO4. The solvents were evaporated to afford the crude alcohols
10a–e, which were purified via column chromatography on silica
gel (ethyl acetate with hexane in gradient). Yields, specific rota-
tions, enantiomeric excess values, and absolute configurations of
the products 10a–e are shown in Table 4. The spectroscopic data
are in full agreement with those reported in the literature.4,8,9,24
Biomol. Chem. 2013, submitted for publication.
15. Faure, R.; Loiseleur, H.; Bartnik, R.; Les´niak, S.; Laurent, A. Cryst. Struct.
Commun. 1981, 10, 515–519.
´
16. Bartnik, R.; Lesniak, S.; Laurent, A. Tetrahedron Lett. 1981, 4811–4812.
17. Bartnik, R.; Les´niak, S.; Laurent, A. J. Chem. Res. 1982, 287, 2701–2709.
18. Cheng, Y.-K.; Duncanson, P.; Vaughan Griffiths, D. Tetrahedron 2008, 64, 2329–
2338.
19. Cain, B. F. J. Org. Chem. 1976, 41, 2029–2031.
20. Bryant, D. R.; McKeon, J. E.; Ream, B. C. J. Org. Chem. 1969, 34, 1106–1108.
21. Abdellatif, K. R. A.; Chowdhury, M. A.; Dong, Y.; Das, D.; Yu, G.; Velázquez, C. A.;
Suresh, M. R.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2009, 19, 3014–3018.
22. Xu, J. Tetrahedron: Asymmetry 2002, 13, 1129–1134.
23. Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2010, 132,
1770–1771.
24. Zhong, J.-C.; Hou, S.-C.; Bian, Q.-H.; Yin, M.-M.; Na, R.-S.; Zheng, B.; Li, Z.-Y.; Liu,
S.-Z.; Wang, M. Chem. Eur. J. 2009, 15, 3069–3071.
25. Chen, Y.-J.; Lin, R.-X.; Chen, C. Tetrahedron: Asymmetry 2004, 15, 3561–
3571.