Journal of the American Chemical Society
Article
H, Ph), 7.12 (m, 1H, C2 or 6−H, Ph), 7.28−7.34 (m, 1H, C2 or 6−H,
Cartesian coordinates, NBO analyses, and optimized structures
and additional MOs of 3−5 and model complex 14′. This
material is available free of charge via the Internet at http://
1
Ph). H NMR (400 MHz, C6D6, 309 K): δ 1.27 ppm (s, Δν1/2 = 2.7
Hz, 18H, 2 × NC(CH3)3), 1.42 (br m, 12H, 2 × CH3A+B), 1.50−1.65
(br m, 8H, 2 × PCH2CH2P) (signal partially obscured by that at δ 1.65
ppm), 1.65 (br m, 12H, 4 × CH3C+D), 6.80−6.94 (m, 2H, C4−H, Ph +
1 × Si−H), 6.96−7.02 (m, 2H, C3,5−H, Ph), 7.12 (m, 1H, C2 or 6−H,
1
Ph), 7.28−7.34 (m, 1H, C2 or 6−H, Ph). H NMR (400 MHz, C6D6,
AUTHOR INFORMATION
■
330 K): δ 1.27 ppm (s, Δν1/2 = 2.7 Hz, 18H, 2 × NC(CH3)3), 1.42 (br
m, 12H, 2 × CH3A+B), 1.50−1.64 (br m, 8H, 2 × PCH2CH2P) (signal
partially obscured by that at δ 1.64 ppm), 1.64 (br m, 12H, 4 ×
Corresponding Author
CH3C+D), 6.85 (quint, JHP = 9.9 Hz, 1H, Si−H), 6.88−6.96 (m, 2H,
3
Notes
C4−H, Ph), 6.98−7.04 (m, 2H, C3,5−H, Ph), 7.16 (m, 1H, C2 or 6−H,
The authors declare no competing financial interest.
1
Ph), 7.28−7.34 (m, 1H, C2 or 6−H, Ph). H NMR (400 MHz, C6D6,
340 K): δ 1.27 ppm (s, Δν1/2 = 2.7 Hz, 18H, 2 × NC(CH3)3), 1.42 (br
m, 12H, 2 × CH3A+B), 1.50−1.65 (br m, 8H, 2 × PCH2CH2P) (signal
partially obscured by that at δ 1.63 ppm), 1.63 (br m, 12H, 4 ×
ACKNOWLEDGMENTS
■
We are grateful to the Cluster of Excellence UniCat (sponsored
by the Deutsche Forschungsgemeinschaft and administered by
the TU Berlin) for financial support of this research. We thank
Dr. J. D. Epping for help concerning the NMR measurements
and Dr. S. Yao and G. Tan for help with the structure solutions
of 3 and 4.
CH3C+D), 6.84 (quint, JHP = 9.9 Hz, 1H, Si−H), 6.88−6.96 (m, 2H,
3
C4−H, Ph), 6.98−7.04 (m, 2H, C3,5−H, Ph), 7.16 (m, 1H, C2 or 6−H,
Ph), 7.28−7.36 (m, 1H, C2 or 6−H, Ph). 31P{1H} NMR (80.1 MHz,
C6D6, 298 K): δ 51.5 ppm (v br, Δν1/2 = 1567 Hz). 31P{1H} NMR
(161.9 MHz, C6D6, 298 K): δ 51.5 ppm (br s, Δν1/2 = 1503 Hz,
dmpe), 67.9 (br s, Δν1/2 = 1503 Hz, dmpe). 31P{1H} NMR (161.9
MHz, C6D6, 309 K): δ 59.5 ppm (br s, Δν1/2 = 2236 Hz, dmpe).
REFERENCES
31P{1H} NMR (161.9 MHz, C6D6, 219 K): δ 59.3 ppm (br s, Δν1/2
=
■
1297 Hz, dmpe). 31P{1H} NMR (161.9 MHz, C6D6, 330 K): δ 60.3
ppm (br s, Δν1/2 = 902 Hz, dmpe). 13C{1H} NMR (100.6 MHz, C6D6,
298 K): δ 24.0 ppm (br m, 2C, 2 × CH3D), 27.2 (br m, Δν1/2 = 122.9
Hz, 8C, 6 × CH3A+B+C), 32.9 (s, 6C, 2 × NC(CH3)3), 35.9 (br m, 4C,
(1) This was the first reported NHSi complex that is reported to be
thermolabile and no X-ray data or 29Si NMR data were reported, see:
Schmid, G.; Welz, E. Angew. Chem., Int. Ed. Engl. 1977, 16, 785.
(2) For a recent and comprehensive review on transition metal NHSi
complexes, see: Blom, B.; Stoelzel, M.; Driess, M. Chem.Eur. J. 2013,
19, 40.
4 × PCHXHY), 53.8 (s, 2C, 2 × C(CH3)3), 127.2 (s, 1C, 1 × C2 or 6
−
H, Ph), 127.2 (s, 1C, 1 × C4−H, Ph), 127.4 (s, 1C, 1 × C3 or 5−H, Ph),
128.0 (s, 1C, 1 × C3 or 5−H, Ph (obscured by solvent peak, located by
HMQC spectrum), 128.7 (s, 1C, 1 × C2 or 6−H, Ph), 136.0 (s, 1C, C1,
Ph), 164.8 (s, 1C, 1 × NCN). 29Si{1H} NMR (79.5 MHz, C6D6, 298
K): δ 63.6 ppm (quint, 2JSiP = 23.7 Hz). High resolution ESI-MS, m/z:
Calcd for [C27H56N2SiFeP4 + 1]+ 617.2585. Found 617.2581.
Procedure for the Hydrosilylation of Ketones. In a glovebox
(N2-atmosphere) a Schlenk flask was charged with complex 5 (0.036
mmol, 5.0 mol %), the corresponding ketone (0.72 mmol), and THF
(2.0 mL). The flask was removed from the glovebox and (EtO)3SiH
(0.79 mmol) was added by syringe. The reaction mixture was stirred in
a preheated oil bath at 100 °C for 24 h. The mixture was cooled in an
ice bath and was treated with dodecane (10 μL) as GC standard (for
GC analysis) and aqueous sodium hydroxide solution (1.0 mL) with
stirring. The reaction mixture was stirred for 60 min at room
temperature and was then extracted with diethyl ether (2 × 10.0 mL).
The combined organic layers were washed with brine, dried with
anhydrous Na2SO4, and filtered. n-Dodecane (internal standard) was
added and an aliquot was removed for GC analysis (30 m Rxi-5 ms
column, 40−300 °C). 7a: MS (EI) m/z 172 (6, M+), 154 (51), 129
(26), 76 (18), 63 (10), 40 (100). 8a: MS (EI) m/z 192 (65, M+), 174
(100), 159 (68), 149 (94), 133 (47), 119 (23), 105 (17), 91 (20), 77
(12), 43 (24). 9a: MS (EI) m/z 212 (100, M+), 197 (69), 169 (94),
154 (33), 138 (45), 123 (12), 109 (12), 95 (12), 77 (12), 65 (11), 42
(48). 10a: MS (EI) m/z 152 (27, M+), 137 (100), 107 (82), 94 (16),
77 (32), 65 (14), 50 (11), 43 (17). 11a: MS (EI) m/z 150 (8, M+),
107 (100), 79 (53). 12a: MS (EI) m/z 198 (41, M+), 180 (63), 165
(21), 119 (100), 105 (82), 91 (61), 77 (60), 65 (22), 51 (15). 13a:
MS (EI) m/z 128 (1, M+), 110 (19), 95 (21), 82 (65), 67 (47), 55
(58), 45 (100).
(3) (a) Meltzer, A.; Prasang, C.; Driess, M. J. Am. Chem. Soc. 2009,
̈
131, 7232. (b) Meltzer, A.; Inoue, S.; Prasang, C.; Driess, M. J. Am.
̈
Chem. Soc. 2010, 132, 3038. (c) Amoroso, D.; Haaf, M.; Yap, G. P. A.;
West, R.; Fogg, D. E. Organometallics 2002, 21, 534.
(4) Stoelzel, M.; Prasang, C.; Inoue, S.; Enthaler, S.; Driess, M.
̈
Angew. Chem., Int. Ed. 2012, 51, 399.
(5) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Chem. Soc., Chem.
Commun. 1988, 278.
(6) Wang, W.; Inoue, S.; Enthaler, S.; Driess, M. Angew. Chem., Int.
Ed. 2012, 51, 6167.
(7) Furstner, A.; Krause, H.; Lehmann, C. W. Chem. Commun. 2001,
̈
2372.
(8) Zhang, M.; Liu, X.; Shi, C.; Ren, C.; Ding, Y.; Roesky, H. W. Z.
Anorg. Allg. Chem. 2008, 634, 1755.
(9) Bruck, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig,
̈
J. F. Angew. Chem., Int. Ed. 2012, 51, 11478.
(10) See as selected examples: (a) Azhakar, R.; Ghadwal, R. S.;
Roesky, H. W.; Hey, J.; Stalke, D. Chem. Asian J. 2012, 7, 528.
(b) Schmedake, T. A.; Haaf, M.; Paradise, B. J.; Millevolte, A. J.;
Powell, D. R.; West, R. J. Organomet. Chem. 2001, 636, 17.
(c) Ramachandran, A.; Sarish, S. P.; Roesky, H. W.; Hey, J.; Stalke,
̌
D. Inorg. Chem. 2011, 50, 5039. (d) Tavcar, G.; Sen, S. S.; Azhakar, R.;
Thorn, A.; Roesky, H. W. Inorg. Chem. 2010, 49, 10199.
(11) Azhakar, R.; Ghadwal, R. S.; Roesky, H. W.; Wolf, H.; Stalke, D.
J. Am. Chem. Soc. 2012, 134, 2423.
(12) Neumann, E.; Pfaltz, A. Organometallics 2005, 24, 2008.
(13) Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F.; Maciejewski, H.
Organometallics 1988, 17, 5599.
(14) (a) Perti, S. H. A.; Eikenberg, D.; Neumann, B.; Stammler, H.-
Theoretical Calculations. DFT calculations on the complexes 3,
4, and 5 were performed at B3LYP level using 6-31G(d) basis sets of
the GAUSSIAN-03 program package. Optimized structure of model
compounds were obtained without symmetry constraints.
G.; Jutzi, P. Organometallics 1999, 18, 2615.
(15) (a) Herrmann, W. A.; Harter, P.; Gstottmayr, C. W. K.; Bielert,
̈
̈
F.; Seeboth, N.; Sirsch, P. J. Organomet. Chem. 2002, 649, 141.
(b) Zeller, A.; Bielert, F.; Harter, P.; Herrmann, W. A.; Strassner, T. J.
̈
Organomet. Chem. 2005, 690, 3292.
(16) Blom, B.; Driess, M.; Gallego, D.; Inoue, S. Chem.Eur. J. 2012,
ASSOCIATED CONTENT
■
18, 13355.
S
* Supporting Information
(17) Yang, W.; Fu, H.; Wang, H.; Chen, M.; Ding, Y.; Roesky, H. W.;
Jana, A. Inorg. Chem. 2009, 48, 5058.
(18) Schmedake, T. A.; Haaf, M.; Paradise, B. J.; Millevolte, A. J.;
Details on X-ray crystal structure analyses (including a graphical
representation of 4), details of the NMR experiment of 14,
selected NMR and HR-ESI-MS spectra of 3−5 as well as
Powell, D. R.; West, R. J. Organomet. Chem. 2001, 636, 17.
J
dx.doi.org/10.1021/ja402480v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX