ChemComm
Communication
Table 2 Comparison of HDAC selectivity
also show an interesting profile for further evaluation based on
their predicted druglikeness (MW, clogP, solubility).
HDAC1
HDAC4
HDAC6
HDAC11
HDAC8
a
a
a
b
The findings described in this communication thus provide a
platform for more elaborate studies with respect to the HDAC6
inhibitory activity of this new class of thiaheterocyclic compounds
which, in combination with further optimization of drug-relevant
molecular properties, might afford promising new lead structures.
In conclusion, N-(4-hydroxycarbamoylbenzyl)-1,2,4,9-tetrahydro-
3-thia-9-azafluorenes were efficiently prepared and shown to be of
interest as novel and selective HDAC6 inhibitors, culminating in
Compoud IC50 (mM) IC50 (mM) IC50 (mM) IC50 (mM) IC50 (mM)
8a
8c
11
12
1.6
1.9
0.0019
0.0037
NC
NC
1.7
0.93
a
b
Reference compound: Trichostatin A. Reference compound: Scriptaid;
NC = Not Calculable (concentration–response curve shows less than 25%
effect at the highest validated testing concentration). 8a: R1 = R2 = H; 8c:
R1 = F, R2 = H.
but sulfones 8a and 8c are even more potent than sulfides 5a and the identification of two sulfone derivatives as interesting lead
5c with IC50 values of 1.9 and 3.7 nM, respectively. structures for further elaboration displaying potent and selective
Finally, the HDAC inhibition selectivity of the two most HDAC6 inhibition in the nanomolar range.
active compounds 8a (R1 = R2 = H) and 8c (R1 = F, R2 = H)
against the other HDAC isoform classes was assessed and, to
this end, a class I (HDAC1), a class IIa (HDAC4), a class IIb
Notes and references
1 M. Dokmanovic, C. Clarke and P. A. Marks, Mol. Cancer Res., 2007,
(HDAC6) and a class IV (HDAC11) isozyme was selected. Con-
sidering the fact that Tubastatin A has over 1000-fold selectivity
against all HDAC isozymes except for HDAC8, where it has only
a 57-fold selectivity, the HDAC8 inhibitory activity of com-
pounds 8a and 8c was also evaluated.
5, 981; P. A. Marks, Biochim. Biophys. Acta, Gene Regul. Mech., 2010,
1799, 717; H. J. Kim and S. C. Bae, Am. J. Transl. Res., 2011, 3, 166.
2 J. E. Bolden, M. J. Peart and R. W. Johnstone, Nat. Rev. Drug
Discovery, 2006, 5, 769; L. D. Marcotullio, G. Canettieri, P. Infante,
A. Greco and A. Gulino, Biochim. Biophys. Acta, 2011, 1815, 241;
N. A. Shein and E. Shohami, Mol. Med., 2011, 17, 448; A. G. Kazantsev
and M. L. Thompson, Nat. Rev. Drug Discovery, 2008, 7, 854.
The data in Table 2 point to a good to excellent HDAC6
selectivity of hydroxamic acids 8a and 8c, with the HDAC6
versus HDAC11 and HDAC1 selectivity being the most pro-
nounced. The HDAC11 inhibitory effect of 8a,c appeared to
be very low and no IC50 values could be obtained. Furthermore,
a 5789-fold and a 3243-fold selectivity against HDAC1 was
determined for compounds 8a and 8c, respectively, which
substantially exceeds the selectivity of Tubastatin A (1093-fold
selectivity).10 In addition, also a high HDAC6 versus HDAC4
selectivity was observed for sulfones 8a and 8c (842- and 513-
fold, respectively). Finally, it is interesting to note that these
compounds show a good HDAC6 versus HDAC8 selectivity, and
both sulfone 8a (895-fold) and sulfone 8c (251-fold) exhibited a
considerably higher selectivity in that respect as compared to
Tubastatin A (57-fold).10
3 A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp and
A. B. P. Van Kuilenburg, Biochem. J., 2003, 370, 737.
4 T. C. Karagiannis and A. El-Osta, Leukemia, 2007, 21, 61.
5 F. Thaler and S. Minucci, Expert Opin. Drug Discovery, 2011, 6, 393.
6 C. d’Ydewalle, E. Bogaert and L. Van Den Bosch, Traffic, 2012,
13, 771; G. Li, H. Jiang, M. Chang, H. Xie and L. Hu, J. Neurol.
Sci., 2011, 304, 1; G. I. Aldana-Masangkay and K. M. Sakamoto,
´
J. Biomed. Biotechnol., 2011, 1; A. Valenzuela-Fernandez, J. R.
´
Cabrero, J. M. Serrador and F. Sanchez-Madrid, Trends Cell Biol.,
2008, 18, 291; C. Boyault, K. Sadoul, M. Pabion and S. Khochbin,
Oncogene, 2007, 26, 5468.
7 J. H. Kalin, H. Zhang, S. Gaudrel-Grosay, G. Vistoli and A. P.
Kozikowski, ChemMedChem, 2012, 7, 425; T. Suzuki, A. Kouketsu,
Y. Itoh, S. Hisakawa, S. Maeda, M. Yoshida, H. Nakagawa and
N. Miyata, J. Med. Chem., 2006, 49, 4809; J. M. Ontoria, S. Altamura,
A. Di Marco, F. Ferrigno, R. Laufer, E. Muraglia, M. C. Palumbi,
M. Rowley, R. Scarpelli, C. Schultz-Fademrecht, S. Serafini,
C. Steinku¨hler and P. Jones, J. Med. Chem., 2009, 52, 6782;
D. V. Smil, S. Manku, Y. A. Chanigny, S. Leit, A. Wahhab, T. P. Yan,
M. Fournel, C. Maroun, Z. Li, A. M. Lemieux, A. Nicolescu, J. Rahil,
The experimental results listed in Tables 1 and 2 are in line
with the structure–activity relationship insights provided
by ligand docking. These data show that decoration of the
N-(4-hydroxycarbamoylbenzyl)-1,2,4,9-tetrahydro-3-thia-9-azafluorene
scaffold at the linker unit (in casu by a methoxy group) is
unfavorable for HDAC6 inhibitory activity. On the other hand,
introduction of a substituent (in casu a fluoro atom) at the cap
group did not appear to have a significant effect on the activity
profile. It should also be noted that replacement of the tertiary
amine functionality (NMe moiety) in the tetrahydropyrido-
[4,3-b]indole core structure of Tubastatin A by a sulfide unit
results in compounds with a comparable HDAC6 inhibitory
activity (at least as concerns the IC50 value), whereas replacement
by a sulfone moiety (SO2) affords even more potent HDAC6
´
S. Lefebvre, A. Panetta, J. M. Besterman and R. Deziel, Bioorg. Med.
¨
Chem. Lett., 2009, 19, 688; S. Schafer, L. Saunders, E. Eliseeva,
A. Velena, M. Jung, A. Schwienhorst, A. Strasser, A. Dickmanns,
R. Ficner, S. Schlimme, W. Sippl, E. Verdin and M. Jung, Bioorg.
Med. Chem., 2008, 16, 2011; C. A. Olsen and M. R. Ghadiri, J. Med.
¨
Chem., 2009, 52, 7836; S. Schafer, L. Saunders, S. Schlimme,
V. Valkov, J. M. Wagner, F. Kratz, W. Sippl, E. Verdin and M. Jung,
ChemMedChem, 2009, 4, 283; P. K. Gupta, R. C. Reid, L. G. Liu,
A. J. Lucke, S. A. Broomfield, M. R. Andrews, M. J. Sweet and
D. P. Fairlie, Bioorg. Med. Chem. Lett., 2010, 20, 7067.
8 M. A. Rivieccio, C. Brochier, D. E. Willis, B. A. Walker,
M. A. D’Annibale, K. McLaughlin, A. Siddiq, A. P. Kozikowski,
S. R. Jaffrey, J. L. Twiss, R. R. Ratan and B. Langley, Proc. Natl. Acad.
Sci. U. S. A., 2009, 106, 19599.
9 J. C. Wong, R. Hong and S. L. Schreiber, J. Am. Chem. Soc., 2003,
125, 5586.
10 K. V. Butler, J. Kalin, C. Brochier, G. Vistoli, B. Langley and
A. P. Kozikowski, J. Am. Chem. Soc., 2010, 132, 10842.
inhibitors. The in silico observed occurrence of hydrogen bonds 11 J. H. Kalin, K. V. Butler, T. Akimova, W. W. Hancock and
A. P. Kozikowski, J. Med. Chem., 2012, 55, 639.
12 A. G. Dossetter, Med. Chem. Commun., 2012, 3, 1518.
13 A. Sudhakara, H. Jayadevappa, H. N. H. Kumar and
between the introduced oxygen atoms and the backbone
nitrogen atom of residues Asp567 and Gly619 can account for
the higher in vitro activity of these sulfone derivatives.
In addition to their promising biological potential and their
straightforward and easy synthesis and purification, sulfones 8a
and 8c (designated as Tubathian A and Tubathian B, respectively)
K. M. Mahadevan, Lett. Org. Chem., 2009, 6, 159.
14 Since an IC50 value is not a constant value and the experiments have
not been performed in parallel, a comparison between the IC50 values
for compounds 5 and 8 and the literature value for Tubastatin A
should be made with care.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3775--3777 3777