ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Pd-Catalyzed π‑Chelation Assisted
ortho-CꢀH Activation and Annulation
of Allylarenes with Internal Alkynes
Parthasarathy Gandeepan and Chien-Hong Cheng*
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
Received December 23, 2012
ABSTRACT
The synthesis of highly substituted naphthalenes from allylarenes and alkynes is described. This reaction proceeds via π-coordination of an
allylic carbonꢀcarbon double bond to the Pd(II) center and is followed by ortho selective CꢀH bond activation.
Transition-metal-catalyzed CꢀH bond functionaliza-
tion has become a prevailing method for the construc-
tion of carbonꢀcarbon and carbonꢀheteroatom bonds.1
In general, the selectivity of CꢀH functionalization is
controlled by the chelating functional groups.2 Recently,
Rh(III) and Ru(II)-catalyzed CꢀH functionalization
followed by annulation with unsaturated molecules has
been extensively used for the synthesis of various hetero-
cyclic and carbocyclic compounds.3,4 However, similar
reactions involving palladium(II)-catalyzed CꢀH activa-
tion followed by oxidative coupling with alkynes are less
well-studied, and only limited examples were reported.5
While a variety of functional groups have been intensively
investigated as the directing groups for CꢀH bond activa-
tion,1,2 most of these groups involve σ-coordination to
the metal catalysts. It is known that CꢀC multiple bonds
readily coordinate with metal catalysts through π-chelation
and facilitate selective CꢀH activation and intramolecular
cyclizations.6 Intermolecular CꢀH coupling reactions
assisted by π-chelating CꢀC multiple bonds are rarely
documented in literature.7 Our ongoing interest8 in various
(1) For reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem.
ꢀ
Rev. 2011, 111, 1780. (c) Alonso, D. A.; Najera, C.; Pastor, I. M.; Yus,
M. Chem.;Eur. J. 2010, 16, 5274. (d) Mkhalid, I. A. I.; Barnard, J. H.;
Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(e) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243.
(2) For reviews, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (c) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (e) Neufeldt,
S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (f) Engle, K. M.; Mei,
T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788.
€
(3) For reviews on Rh(III), see: (a) Satoh, T.; Miura, M. Chem.;Eur.
J. 2010, 16, 11212. (b) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman,
J. Acc. Chem. Res. 2012, 45, 814. (c) Song, G.; Wang, F.; Li, X. Chem.
Soc. Rev. 2012, 41, 3651.
(6) (a) Mamane, V.; Hannen, P.; Furstner, A. Chem.;Eur. J. 2004,
10, 4556. (b) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130,
5636. (c) Chernyak, N.; Gorelsky, S. I.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2011, 50, 2342.
(4) For reviews on Ru(II), see: (a) Arockiam, P. B.; Bruneau, C.;
Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (b) Kozhushkov, S. I.;
Ackermann, L. Chem. Sci. 2013, 4, 886. (c) Ackermann, L. Acc. Chem.
Res. 2013 DOI: 10.1021/ar3002798.
(5) (a) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N.
Angew. Chem., Int. Ed. 2009, 48, 4572. (b) Shi, Z.; Cui, Y.; Jiao, N. Org.
Lett. 2010, 12, 2908. (c) Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 12,
1540. (d) Wu, Y.-T.; Huang, K. -H.; Shin, C. -C.; Wu, T.-C. Chem.;
Eur. J. 2008, 14, 6697. (e) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. Angew.
Chem., Int. Ed. 2009, 48, 7895. (f) Yamashita, M.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2009, 11, 2337. (g) Yamashita, M.; Horiguchi, H.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7481. (h) Zhou,
F.; Han, X.; Lu, X. Tetrahedron Lett. 2011, 52, 4681. (i) Zhong, H.;
Yang, D.; Wang, S.; Huang, J. Chem. Commun. 2012, 48, 3236.
(7) (a) Kiyooka, S.-I.; Takeshita, Y. Tetrahedron Lett. 2005, 46, 4279.
(b) Yamada, S.; Obora, Y.; Sakaguchi, S.; Ishii, Y. Bull. Chem. Soc. Jpn.
2007, 80, 1194. (c) Tobisu, M.; Hyodo, I.; Onoe, M.; Chatani, N. Chem.
Commun. 2008, 6013. (d) Gandeepan, P.; Cheng, C.-H. J. Am. Chem.
Soc. 2012, 134, 5738. (e) Minami, Y.; Shiraishi, Y.; Yamada, K.;
Hiyama, T. J. Am. Chem. Soc. 2012, 134, 6124.
(8) (a) Gandeepan, P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem.
Soc. 2010, 132, 8569. (b) Karthikeyan, J.; Cheng, C.-H. Angew. Chem.,
Int. Ed. 2011, 50, 9880. (c) Jayakumar, J.; Parthasarathy, K.; Cheng,
C.-H. Angew. Chem., Int. Ed. 2012, 51, 197. (d) Parthasarathy, K.;
Senthilkumar, N.; Jayakumar, J.; Cheng, C.-H. Org. Lett. 2012, 14,
3478. (e) Gandeepan, P.; Hung, C.-H.; Cheng, C.-H. Chem. Commun.
2012, 48, 9379. (f) Muralirajn, K.; Parthasarathy, K.; Cheng, C.-H. Org.
Lett. 2012, 14, 4262.
r
10.1021/ol400792y
XXXX American Chemical Society