2614
H. Bel Abed et al. / Tetrahedron Letters 54 (2013) 2612–2614
7. Kataoka, K.; Suzuki, N.; Kosugi, T.; Imai, M.; Makino, H. Patent WO2004/
076458.
8. (a) Nolte, B.; Sucholeiki, I.; Feuerstein, T.; Gallagher, B. M.; Wu, X. Patent
WO2008/063671.; (b) Dressen, D.; Garofalo, A. W.; Hawkinson, J.; Hom, D.;
Jagodzinski, J.; Marugg, J. L.; Neitzel, L. M.; Pleiss, M. A.; Szoke, B.; Tung, J. S.;
Wone, D. W. G.; Wu, J.; Zhang, H. J. Med. Chem. 2007, 50, 5161–5167.
9. Krasovsky, L. A.; Hartulyari, A. S.; Nenajdenko, V. G.; Balenkova, E. S. Synthesis
2002, 1, 133–137.
10. Cocconcelli, G.; Ghiron, C.; Haydar, S.; Micco, I.; Zanaletti, R. Synth. Commun.
2010, 40, 2547–2555.
11. (a) Nagahara, K.; Kawano, H.; Sasaoka, S.; Ukawa, C.; Hirama, T.; Takada, A. J.
Heterocycl. Chem. 1994, 31, 239–243; (b) Gavrin, L. K.; Lee, A.; Provencher, B. A.;
Massefski, W. W.; Huhn, S. D.; Ciszewski, G. M.; Cole, D. C.; McKew, J. C. J. Org.
Chem. 2007, 72, 1043–1046.
12. Representative procedure for 6: A 1 M solution of LiHMDS in THF (29.4 mL,
29.4 mmol, 2.0 equiv) was added dropwise to a solution of benzoyl chloride
(1.7 mL, 14.68 mmol, 1.0 equiv) and fluoroacetonitrile 4 (0.82 mL, 14.68 mmol,
1.0 equiv) in dry THF (15 mL) cooled to À78 °C under nitrogen. The mixture
was allowed to reach room temperature after 5 h of reaction and quenched
Scheme 4. Synthesis of 3-fluoro-7-(hetero)aryl-2-phenyl pyrazolo[1,5-a]pyrimi-
dine derivatives.
with
a saturated solution of ammonium chloride. The mixture was
concentrated under reduced pressure to afford the desired
a-fluoro-b-
ketonitrile 5 in a form pure enough for the next step.
Hydrazine hydrate (64% in water) (1.4 mL, 29.4 mmol, 2.0 equiv) was added to
a solution of -fluoro-b-ketonitrile 5 (14.68 mmol) in ethanol (20 mL), and the
introducing the fluorine at an earlier stage of the synthesis instead
of using a direct electrophilic fluorination on the pyrazolo[1,5-
a]pyrimidine. The method could be employed to the development
of a small-size library of ‘drug-like’ compounds with different
amines. In a first screening assay, compound 11h showed 71% of
inhibition at 10 lM towards the TGF-b receptor II. The further bio-
logical evaluation of the fluorinated pyrazolo[1,5-a]pyrimidines
obtained in these experiments is ongoing.
a
reaction was heated at reflux for 18 h. The reaction mixture was allowed to
cool to room temperature, and the solvent was evaporated under reduced
pressure. The residue was dissolved in dichloromethane and washed with
water. The organic phase was concentrated to give a crude product, flash
column chromatography on silica gel (ethyl acetate/hexane 90:10) afforded the
desired product 6 as a beige powder (1.3 g, 50%); mp 115–118 °C; 1H NMR
(500 MHz, DMSO-d6): d 11.92 (br s, 1H), 7.66 (d, J = 7.5 Hz, 2H), 7.45 (t,
J = 7.4 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 4.77 (br s, 2H); 13C NMR (125 MHz,
DMSO-d6): d 143.3, 135.9, 134.3, 129.0, 127.9, 126.2, 124.7. 19F NMR (470 MHz,
DMSO-d6):
178.0778.
d
À186.5. HRMS calcd for C9H8FN3 (M+H)+: 178.0775, found:
Acknowledgments
13. Representative procedure for 9: To carboxylic acid 8 (1 g, 3.66 mmol) was added
Dowtherm (10 mL). The suspension was heated to 230 °C for 5 h. The
A
Hassen Bel Abed is indebted to the IWT (Agentschap voor Inno-
vatie door Wetenschap en Technologie) and the Galapagos com-
pany for providing a PhD-scholarship (Baekeland-project 90704).
He is also grateful to Dr. Karim and Dr. Kachare for their kind
suggestions.
reaction mixture was cooled to room temperature, then diluted with hexanes
(30 mL), stirred vigorously, filtered, and dried to obtain the desired product 9
as a light brown powder (0.68 g, 82%); mp 205–208 °C; 1H NMR (500 MHz,
DMSO-d6): d 7.97 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 5.9 Hz, 1H), 7.49 (t, J = 7.6 Hz,
2H), 7.39 (t, J = 7.5 Hz, 1H), 5.48 (d, J = 5.9 Hz, 1H); 13C NMR (125 MHz, DMSO-
d6): d 157.2, 148.0, 136.9, 131.8, 131.7, 128.8, 128.3, 126.5, 92.8. HRMS calcd
for C12H8FN3O (M+H)+: 230.0724, found: 230.0725.
14. Representative procedure for 11a: To
1.0 equiv) in ethanol (10 mL) was added a solution of 70% ethylamine (70% in
water) (48 L, 0.6 mmol, 1.5 equiv), followed by triethylamine (83 L,
a solution of 10 (100 mg, 0.4 mmol,
References and notes
l
l
1. (a) Gregg, B. T.; Tymoshenko, D. O.; Razzano, D. A.; Johnson, M. R. J. Comb. Chem.
2007, 9, 507–512; (b) Kiessling, A.; Wiesinger, R.; Sperl, B.; Berg, T.
ChemMedChem 2007, 2, 627–630; (c) Selleri, S.; Bruni, F.; Costagli, C.;
Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Besnard, F.; Costa, B.;
Montali, M.; Martini, C.; Fohlin, J.; De Siena, G.; Aiello, P. A. J. Med. Chem. 2005,
48, 6756–6760; (d) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme,
C.; Labaudiniere, R. F. J. Med. Chem. 1995, 42, 3251–3264.
2. Berger, D. M.; Torres, N.; Dutia, M.; Powell, D.; Ciszewski, G.; Gopalsamy, A.;
Levin, J. L.; Kim, K.; Xu, W.; Wilhelm, J.; Hu, Y.; Collins, K.; Feldberg, L.; Kim, S.;
Frommer, E.; Wojciechowicz, D.; Mallon, R. Bioorg. Med. Chem. Lett. 2009, 19,
6519–6523.
3. Williamson, D. S.; Parratt, M. J.; Bower, J. F.; Moore, J. D.; Richardson, C. M.;
Dokurno, P.; Cansfield, A. D.; Francis, G. L.; Hebdon, R. J.; Howes, R.; Jackson, P.
S.; Lockie, A. M.; Murray, J. B.; Nunns, C. L.; Powles, J.; Robertson, A.; Surgenor,
A. E.; Torrance, C. J. Bioorg. Med. Chem. Lett. 2005, 15, 863–867.
4. Ren, L.; Laird, E. R.; Buckmelter, A. J.; Dinkel, V.; Gloor, S. L.; Grina, J.; Newhouse,
B.; Rasor, K.; Hastings, G.; Gradl, S. N.; Rudolph, J. Bioorg. Med. Chem. Lett. 2012,
22, 1165–1168.
5. Kosugi, T.; Mitchell, D. R.; Fujino, A.; Imai, M.; Kambe, M.; Kobayashi, S.;
Makino, H.; Matsueda, Y.; Oue, Y.; Komatsu, K.; Imaizumi, K.; Sakai, Y.; Sugiura,
S.; Takenouchi, O.; Unoki, G.; Yamakoshi, Y.; Cunliffe, V.; Frearson, J.; Gordon,
R.; Harris, C. J.; Kalloo-Hosein, H.; Le, J.; Patel, G.; Simpson, D. J.; Sherborne, B.;
Thomas, P. S.; Suzuki, N.; Takimoto-Kamimura, M.; Kataoka, K. J. Med. Chem.
2012, 55, 6700–6715.
0.6 mmol, 1.5 equiv) at room temperature. The reaction mixture was
refluxed for 16 h and after completion of the reaction (TLC), the reaction
mixture was allowed to cool to room temperature. Dichloromethane was
added and the organic phase was then washed two times with a saturated
solution of NaHCO3, and one time with brine. It was then dried over Na2SO4,
and concentrated in vacuo. Flash column chromatography on silica gel (ethyl
acetate/hexane 75:25) afforded the desired product 11a as a white powder
(72 mg, 70%); mp 212–216 °C; 1H NMR (500 MHz, DMSO-d6):
d 8.16 (d,
J = 5.3 Hz, 1H), 8.13 (t, J = 5.8 Hz, 1H), 8.04 (d, J = 7.3 Hz, 2H), 7.55 (t, J = 7.6 Hz,
2H), 7.47 (t, J = 7.5 Hz, 1H), 6.22 (d, J = 5.3 Hz, 1H), 3.48 (m, 2H), 1.26 (t,
J = 7.3 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): d 149.8, 146.0, 138.7, 136.9,
135.1, 133.5, 130.6, 129.1, 126.7, 85.5, 36.6, 14.2. HRMS calcd for C14H13FN4
(M+H)+: 257.1197, found: 257.1195.
15. Representative procedure for 14b: To a solution of 3-amino-4-fluoro pyrazole 6
(150 mg, 0.85 mmol, 1 equiv) in acetic acid (5 mL) at room temperature was
added 2-thienyl dimethylamino propenone (170 mg, 0.94 mmol, 1.1 equiv).
The mixture was refluxed for 16 h. The suspension was filtered warm, then
washed several times with ethanol and dried to obtain the desired product 14b
as a yellow powder (105 mg, 42%); mp 233–237 °C; 1H NMR (500 MHz, DMSO-
d6): d 8.61 (d, J = 4.6 Hz, 1H), 8.59 (d, J = 3.8 Hz, 1H), 8.18 (d, J = 5.0 Hz, 1H), 8.13
(d, J = 7.7 Hz, 2H), 7.82 (d, J = 4.6 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.52 (t,
J = 7.5 Hz, 1H), 7.43 (t, J = 4.8 Hz, 1H); 13C NMR (125 MHz, DMSO-d6): d 149.0,
139.2, 138.6, 136.2, 135.0, 134.2, 132.5, 130.0, 129.6, 129.3, 129.2, 127.8, 126.6,
104.6. HRMS calcd for C16H10FN3S (M+H)+: 296.0652, found: 296.0659.
6. Bel Abed, H.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. Tetrahedron Lett.
2012, 53, 6489–6491.