F
T. Mino et al.
Cluster
Synlett
(8) (a) Mino, T.; Tanaka, Y.; Sakamoto, M.; Fujita, T. Heterocycles
2000, 53, 1485. (b) Hattori, T.; Sakamoto, J.; Hayashizaka, N.;
Miyano, S. Synthesis 1994, 199.
(9) [2-(Diphenylphosphoryl)-6-methoxyphenyl][(1S)-1-phenyl-
ethyl]amine [(S)-8a]
method of full-matrix least–squares, where the final R and Rw
were 0.0327, 0.0875, respectively, for 4982 reflections.
[2-(Diphenylphosphino)-6-methoxyphenyl][(1S)-1-phenyl-
ethyl][(2E)-3-phenylprop-2-en-1-yl]amine [(S)-6a]
To a mixture of phosphine oxide (S)-9a (1.09 g, 2.0 mmol) and
Et3N (3.1 mL, 22 mmol) in m-xylene (10 mL) was added HSiCl3
(2.0 mL, 20 mmol) at 0 °C under Ar. The mixture was stirred at
120 °C for 24 h then cooled to r.t. and diluted with Et2O. The
reaction was quenched with 2 M aq NaOH, and the organic layer
was washed with brine, dried (MgSO4), and concentrated under
reduced pressure. The residue was purified by chromatography
[silica gel, hexane–EtOAc (50:1)]. to give a white solid; yield
A 1.6 M solution of BuLi in hexane (9.4 mL, 15.0 mmol) was
slowly added to a solution of [(1S)-1-phenylethyl]amine (1.82 g,
15.0 mmol) in THF (35 mL) at –80 °C. Phosphine oxide 7a (1.69
g, 5.0 mmol) was added at r.t., and the mixture was stirred for
21 h at r.t. The mixture was then diluted with Et2O, and the
reaction was quenched with sat. aq NH4Cl. The organic layer
was washed with brine, dried (MgSO4), and concentrated under
reduced pressure. The residue was purified by chromatography
[silica gel, hexane–EtOAc (2:1)] to give a beige solid; yield: 1.60
g (75%, 3.74 mmol); mp 124–126 °C; []D20 +99.1 (c 0.50, CHCl3).
1H NMR (300 MHz, CDCl3): = 7.68–7.53 (m, 6 H), 7.50–7.41 (m,
4 H), 7.36 (br s, 1 H), 7.15–7.12 (m, 2 H), 7.06–7.03 (m, 3 H),
6.79 (d, J = 7.1 Hz, 1 H), 6.56 (dt, J = 3.6 and 7.8 Hz, 1 H), 6.42
(ddd, J = 1.4, 7.7, 14.0 Hz, 1 H), 5.10 (t, J = 6.1 Hz, 1 H), 3.69 (s, 3
H), 1.33 (d, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): = 150.7
20
0.530 g (50%. 1.0 mmol); mp 55–56 °C; []D +59.6 (c 0.51,
CHCl3); rotamer ratio = 20:1.
1H NMR (300 MHz, CDCl3): (major rotamer) = 7.66 (d, J = 8.0
Hz, 2 H), 7.37–7.04 (m, 19 H), 6.86 (dd, J = 1.0, 8.1 Hz, 1 H), 6.53
(ddd, J = 1.3, 2.8, 7.6 Hz, 1 H), 6.04–5.94 (m, 1 H), 5.85 (d, J = 15.9
Hz, 1 H), 4.59 (q, J = 6.5 Hz, 1 H), 3.83 (s, 3 H), 3.58–3.42 (m, 2
H), 0.89 (d, J = 6.7 Hz, 3 H); (minor rotamer) = 7.66 (d, J = 7.4
Hz, 2 H), 7.37–7.04 (m, 19 H), 6.64 (dd, J = 1.0, 8.1 Hz, 1 H),
6.42–6.39 (m, 1 H), 6.09 (d, J = 16.1 Hz, 1 H), 5.76–5.68 (m, 1 H),
4.81 (q, J = 6.5 Hz, 1 H), 3.75 (s, 3 H), 3.58–3.42 (m, 2 H), 1.50 (d,
J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): = 159.3 (d, JCP = 3.9
Hz), 147.1, 141.9 (d, JCP = 4.2 Hz), 141.1 (d, JCP = 22.0 Hz), 138.7
(d, JCP = 11.6 Hz), 146.4, 144.1 (d, JCP = 5.5 Hz), 133.0 (d, JCP
103.9 Hz), 132.6 (d, JCP = 104.5 Hz), 132.2 (d, JCP = 10.1 Hz) (2 C),
132.0 (d, JCP = 9.9 Hz) (2 C), 131.8 (d, JCP = 2.5 Hz), 131.7 (d, JCP
2.5 Hz), 128.4 (d, JCP = 12.2 Hz) (4 C), 127.9 (2 C), 126.2 (2 C),
126.0, 125.6 (d, JCP = 11.0 Hz), 117.5 (d, JCP = 15.5), 115.6 (d, JCP
=
=
=
(d, JCP = 14.4 Hz), 138.5 (d, JCP = 15.1 Hz), 137.6, 134.2 (d, JCP =
2.5 Hz), 115.5 (d, JCP = 104.2 Hz), 55.5, 55.4, 24.6. 31P NMR (121
MHz, CDCl3): = 37.5. EI-MS: m/z (%): 427 (M+, 30), 412 (100).
HRMS (ESI-Orbitrap): m/z [M + H]+ calcd for C27H27NO2P:
428.1774; found: 428.1766.
[2-(Diphenylphosphoryl)-6-methoxyphenyl][(1S)-1-phenyl-
ethyl][(2E)-3-phenylprop-2-en-1-yl]amine [(S)-9a]
To the solution of the phosphine oxide (S)-8a (2.14 g, 5.0 mmol)
in MeCN (50 mL) at r.t. were added K2CO3 (3.46 g, 25 mmol) and
cinnamyl bromide (1.18 g, 6.0 mmol) in MeCN (20 mL), and the
mixture was stirred at 60 °C for 22 h. The mixture was then fil-
tered and concentrated under reduced pressure. The residue
was purified by chromatography [silica gel, hexane–EtOAc
(5:1)] to give a white solid; yield: 2.29 g (84%, 4.22 mmol); mp
169–171 °C; []D20 +53.1 (c 0.36, CHCl3).
20.5 Hz) (2 C), 134.0 (d, JCP = 20.5 Hz) (2 C), 130.1, 129.0,
128.2(8) (d, JCP = 2.0 Hz) (2 C), 128.2(6), 128.2(2) (d, JCP = 1.0 Hz)
(2 C), 128.1(4) (2 C), 128.0(9) (d, JCP = 1.0 Hz) (2 C), 128.0(3),
128.0(1) (2 C), 126.9, 126.6, 126.4 (2 C), 126.1 (2 C), 111.9, 61.6,
56.3, 55.1, 23.5. 31P NMR (121 MHz, CDCl3): (major rotamer) =
−16.0; (minor rotamer) = −14.1. EI-MS: m/z (%) = 527 (M+, 8.2),
422 (100). HRMS (ESI-Orbitrap): m/z [M
36H35NOP: 528.2451; found: 528.2441.
+
H]+ calcd for
C
(10) For recent examples, see: (a) Li, S.; Zhang, J.; Li, H.; Feng, L.;
Peng Jiao, P. J. Org. Chem. 2019, 84, 9460. (b) Imrich, M. R.;
Maichle-Mö ssmer, C.; Ziegler, T. Eur. J. Org. Chem. 2019, 3955.
(c) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou,
L. Chem. Sci. 2019, 10, 6777. (d) Baumann, T.; Brückner, R.
Angew. Chem. Int. Ed. 2019, 58, 4714. (e) Qiu, Z.; Sun, R.; Teng, D.
Org. Biomol. Chem. 2018, 16, 7717. (f) Borràs, C.; Elias-Rodri-
guez, P.; Carmona, A. T.; Robina, I.; Pàmies, O.; Diéguez, M.
Organometallics 2018, 37, 1682. (g) Argüelles, A. J.; Sun, S.;
Budaitis, B. G.; Nagorny, P. Angew. Chem. Int. Ed. 2018, 57, 5325.
(h) Biosca, M.; Margalef, J.; Caldentey, X.; Besora, M.; Rodriguez-
Escrich, C.; Saltó, J.; Cambeiro, X. C.; Maseras, F.; Pàmies, O.;
Diéguez, M.; Pericàs, M. A. ACS Catal. 2018, 8, 3587. (i) Chang, S.;
Wang, L.; Lin, X. Org. Biomol. Chem. 2018, 16, 2239.
(j) Naganawa, Y.; Abe, H.; Nishiyama, H. Chem. Commun. 2018,
54, 2674. (k) Szulc, I.; Kołodziuk, R.; Zawisza, A. Tetrahedron
2018, 74, 1476. (l) Yao, L.; Nie, H.; Zhang, D.; Wang, L.; Zhang, Y.;
Chen, W.; Li, Z.; Liu, X.; Zhang, S. ChemCatChem 2018, 10, 804.
(m) Sartorius, F.; Trebing, M.; Brückner, C.; Brückner, R. Chem.
Eur. J. 2017, 23, 17463. (n) Ogasawara, M.; Tseng, Y.-Y.; Uryu, M.;
Ohya, N.; Chang, N.; Ishimoto, H.; Arae, S.; Takahashi, T.;
Kamikawa, K. Organometallics 2017, 36, 4061.
1H NMR (300 MHz, CDCl3): = 7.84–7.73 (m, 4 H), 7.47–7.38 (m,
8 H), 7.24–7.01 (m, 10 H), 6.66 (ddd, J = 1.2, 7.7, 13.9 Hz, 1 H),
5.83 (d, J = 15.9 Hz, 1 H), 5.33 (ddd, J = 7.0, 7.0, 15.9 Hz, 1 H),
4.67 (q, J = 6.0 Hz, 1 H), 3.73 (dd, J = 7.5, 7.6 Hz, 1 H), 3.67 (s, 3
H), 3.26 (dd, J = 6.5, 15.1 Hz, 1 H), 1.11 (d, J = 6.7 Hz, 3 H). 13C
NMR (75 MHz, CDCl3): = 160.1 (d, JCP = 11.5 Hz), 145.3, 143.8
(d, JCP = 4.4 Hz), 137.8, 134.7 (d, JCP = 106.6 Hz), 134.0 (d, JCP
=
105.3 Hz), 133.0 (d, JCP = 103.8 Hz), 132.1 (d, JCP = 9.0 Hz) (2 C),
131.1(931) (d, JCP = 2.6 Hz), 131.1(925) (d, JCP = 9.4 Hz) (2 C),
131.0 (d, JCP = 2.8 Hz), 129.5, 128.9, 128.5 (2 C), 128.2 (d, JCP
=
12.2 Hz) (2 C), 128.1 (d, JCP = 11.7 Hz) (2 C), 128.0 (2 C), 127.6 (2
C), 126.7 (d, JCP = 12.4 Hz), 126.4, 126.3, 126.2 (d, JCP = 3.3 Hz),
126.0 (2 C), 115.6 (d, JCP = 2.3 Hz), 62.3, 56.9, 55.1, 22.4. 31P NMR
(121 MHz, CDCl3): = 27.5. EI-MS: m/z (%) = 543 (M+, 0.15), 438
(100). HRMS (ESI-Orbitrap): m/z [M + H]+ calcd for C36H35NO2P:
544.2400; found: 544.2388.
X-ray diffraction analysis: Colorless plate crystals (0.20 × 0.10 ×
0.020 mm3) from hexane–CHCl3; monoclinic space group P21, a
= 12.4152(3) Å, b = 8.9538(2) Å, c = 13.5274(3) Å, =
103.4670(10)°, V = 1462.40(6) Å3, Z = 2, = 1.235 g/cm3, (Cu
K) = 1.54178 mm–1. The structure was solved by the direct
(11) Palladium-Catalyzed Allylic Alkylation of Malonates;
General Procedure
BSA (0.15 mL, 0.60 mmol) and the appropriate allylic ester (0.20
mmol) were added to a mixture of [Pd(C3H5)Cl]2 (1.48 mg, 4
mol), (S)-6d (4.64 mg, 8 mol), and NaOAc (1.64 mg, 20 mol)
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–G