(Mes = 2,4,6-Me3C6H2),22 an efficient catalyst for
RCM,23 in CH2Cl2 at 25 or 40 °C. As shown in Table 1,
the RCM catalyzed by Ru-complex A efficiently converted
the substrate 2a into the desired six-membered carbocyclic
1,4-cyclohexadienylboronate 3a in 82% yield (Table 1,
entry 1). Owing to a suppression of the intermolecular
reaction, the diluted solution (0.01 M) of 2a gave the better
yield (Table 1, entry 2). A catalyst loading reduced to
1.0 mol % also generated 3a in comparable yields (Table 1,
entries 3 and 4). Finally, we found that the inexpensive
first-generation Grubbs catalyst B24 also furnished 3a in
95% yield. This is the first example of the Ru-catalyzed
RCM of tetrasubstituted alkenylboronates into cyclic
1-alkenylboronates bearing the substituents in the R-position
of the boron functionality.
alkenylboronate 2d (for a five-membered ring) and 2f
(for an eight-membered ring). Unfortunately, however,
no desired cyclic 1-alkenylboronates were isolated under
the conditions described in Table 1. For example, when 2d
and 2f were treated with catalyst B, the complete consump-
tion of 2d gave the complex mixture and the starting
compound 2f remained unreacted, respectively.
Table 2. Synthesis of Cyclic 1-Alkenylboronates 3aꢀc via RCM
of Alkenylboronates 2aꢀca
entry
substrate
product
yield (%)b
Table 1. Effect of Reaction Parameters on RCM of the
Tetrasubstituted Alkenylboronate 2aa
1
2
3
2a
2b
2c
3a
3b
3c
95
94
94
a All reactions employed alkenylboronates 2 (2.0 mmol) in CH2Cl2
(200 mL, 0.01 M) at rt. b Isolated yields.
The successful transformation of tetrasubstituted alke-
nylboronates 2 into six-membered cyclic ones 3 encour-
aged us to investigate the synthesis of 1,2-disubstituted 1,4-
cyclohexadienes, o-terphenyls, and triphenylenes. In the
field of organic materials science, the design and charac-
terization of polycyclic aromatic hydrocarbons (PAHs),
which exhibit superior electronic, optical, and/or self-assem-
bling properties, have been studied intensively.25 Hence,
efficient synthetic methods leading to functionalized PAHs
are expected to assist the rapid developments of PAH-based
functional materials.26 The Pd-catalyzed SuzukiꢀMiyaura
cross-coupling reactions of 3a with aryl iodides could be an
efficient method for the formation of a wide variety of
PAHs. The results of cross-couplings and the aromatization
of 3a are also summarized in Scheme 3. The resultant cyclic
alkenylboronate 3a was efficiently cross-coupled with var-
ious aryl iodides to give the corresponding 1,2-disubstituted
1,4-cyclohexadienes 4aꢀd in excellent yields in the
entry
catalyst
X (mol %)
Y (M)
temp (°C)
yield (%)b
1
2
3
4
5
A
A
A
A
B
5.0
5.0
1.0
1.0
1.0
0.10
0.01
0.01
0.01
0.01
40
40
40
25
25
82
94
92
99
95
a All reactions employed alkenylboronate 2a (0.1 mmol). b GC yields.
Under the optimized reaction conditions, a series of
alkenylboronates 2aꢀc were subjected to the Ru-catalyzed
RCM. The results are summarized in Table 2. The six-
membered cyclic 1-alkenylboronates 3aꢀc were formed in
excellent yields. Since an RCM forming five- to seven-
membered rings has been known to proceed,11 we at-
tempted the RCM of the synthesized tetrasubstituted
(22) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956. (b) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.;
Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs,
R. H. J. Am. Chem. Soc. 2003, 125, 2546–2558. (c) Vougioukalakis,
G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746–1787.
€
€
(25) (a) Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev.
€
2001, 101, 1267–1300. (b) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev.
2007, 107, 718–747. (c) Wu, D.; Zhi, L.; Bodwell, G. J.; Cui, G.; Tsao, N.;
€
Mullen, K. Angew. Chem., Int. Ed. 2007, 46, 5417–5420. (d) Lorenz,
(23) (a) Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127,
10470–10471. (b) Yoshida, K.; Kawagoe, F.; Iwadate, N.; Takahashi,
H.; Imamoto, T. Chem.;Asian J. 2006, 1, 611–613. (c) Yoshida, K.;
Horiuchi, S.; Iwadate, N.; Kawagoe, F.; Imamoto, T. Synlett 2007,
1561–1564. (d) Yoshida, K.; Toyoshima, T.; Imamoto, T. Chem.
Commun. 2007, 3774–3776. (e) Yoshida, K.; Takahashi, H.; Imamoto,
T. Chem.;Eur. J. 2008, 14, 8246–8261. (f) Yoshida, K.; Shishikura, Y.;
Takahashi, H.; Imamoto, T. Org. Lett. 2008, 10, 2777–2780. (g) Yoshida,
K.; Narui, R.; Imamoto, T. Chem.;Eur. J. 2008, 14, 9706–9713.
(h) Yoshida, K.; Toyoshima, T.; Imamoto, T. Bull. Chem. Soc. Jpn.
2008, 81, 1512–1517. (i) Yoshida, K.; Kawagoe, F.; Hayashi, K.;
Horiuchi, S.; Imamoto, T.; Yanagisawa, A. Org. Lett. 2009, 11, 515–
518. (j) Takahashi, H.; Yoshida, K.; Yanagisawa, A. J. Org. Chem. 2009,
74, 3632–3640. (k) Yoshida, K.; Shida, H.; Takahashi, H.; Yanagisawa,
A. Chem.;Eur. J. 2011, 17, 344–349. (l) Yoshida, K.; Hayashi, K.;
Yanagisawa, A. Org. Lett. 2011, 13, 4762–4765.
ꢁ
U. J.; Solca, N.; Lemaire, J.; Maitre, P.; Dopfer, O. Angew. Chem., Int.
Ed. 2007, 46, 6714–6716. (e) Rouhanipour, A.; Roy, M.; Feng, X.;
€
€
Raeder, H. J.; Mullen, K. Angew. Chem., Int. Ed. 2009, 48, 4602–4604.
(f) Kitagawa, Y.; Segawa, H.; Ishii, K. Angew. Chem., Int. Ed. 2011, 50,
9133–9136.
(26) (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley:
New York, 1997. (b) Boorum, M. M.; Scott, L. T. In Modern Arene
Chemistry; Astruc, D., Ed.; Wiley-VCH: Weinheim, 2002: pp 20ꢀ31.
(27) For recent selected examples, see: (a) Lee, J. J.; Yamaguchi, A.;
Alam, M. A.; Yamamoto, Y.; Fukushima, T.; Kato, K.; Takata, M.;
Fujita, N.; Aida, T. Angew. Chem., Int. Ed. 2012, 51, 8490–8494. (b)
Osawa, T.; Kajitani, T.; Hashizume, D.; Ohsumi, H.; Sasaki, S.; Takata,
M.; Koizumi, Y.; Saeki, A.; Seki, S.; Fukushima, T.; Aida, T. Angew.
Chem., Int. Ed. 2012, 51, 7990–7993. (c) Tatum, L. A.; Johnson, C. J.;
Fernando, A. A. P.; Ruch, B. C.; Barakoti, K. K.; Alpuche-Aviles,
M. A.; King, B. T. Chem. Sci. 2012, 3, 3261–3264. (d) Paquette, J. A.;
Yardley, C. J.; Psutka, K. M.; Cochran, M. A.; Calderson, O.; Williams,
V. E.; Maly, K. E. Chem. Commun. 2012, 48, 8210–8212.
(24) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1996, 118, 100–110. (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs,
R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041.
Org. Lett., Vol. XX, No. XX, XXXX
C