Page 5 of 6
ACS Catalysis
(4) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. High
branched racemic and linear (Z and E) allylic substrates bearing
simple alkyl groups could be converted to the same chiral products.
-Allyl-Rh(III) intermediate was isolated to understand the origin
of the high regio- and enantioselectivities. The modular synthesis
of bisoxazolinephosphine ligands enables the fine tuning of the
steric and electronic properties of the ligands, which is expected to
broaden the scope of the nucleophiles and the allylic substrates in
the future.
Enantioselectivity in Rhodium-Catalyzed Allylic Alkylation of 1-
Substituted 2-Propenyl Acetates. Org. Lett. 2003, 5, 1713-1715.
(5) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.;
Samas, B. M. A Highly Enantioselective Allylic Amination Reaction
Using a Commercially Available Chiral Rhodium Catalyst: Resolution
of Racemic Allylic Carbonates. Org. Lett. 2009, 11, 3140-3142.
(6) (a) Arnold, J. S.; Nguyen, H. M. Rhodium-Catalyzed Dynamic
Kinetic Asymmetric Transformations of Racemic Tertiary Allylic
Trichloroacetimidates with Anilines. J. Am. Chem. Soc. 2012, 134,
8380-8383. (b) Arnold, J. S.; Cizio, G. T.; Heitz, D. R.; Nguyen, H. M.
Rhodium-catalyzed regio- and enantioselective amination of racemic
secondary allylic trichloroacetimidates with N-methyl anilines. Chem.
Commun. 2012, 48, 11531-11533. (c) Arnold, J. S.; Mwenda, E. T.;
Nguyen, H. M. Rhodium-Catalyzed Sequential Allylic Amination and
Olefin Hydroacylation Reactions: Enantioselective Synthesis of Seven-
Membered Nitrogen Heterocycles. Angew. Chem. Int. Ed. 2014, 53,
3688-3692.
(7) (a) Li, C.; Breit, B. Rhodium-Catalyzed Dynamic Kinetic
Asymmetric Allylation of Phenols and 2-Hydroxypyridines. Chem. Eur.
J. 2016, 22, 14655-14663. (b) Zhou, Y.; Breit, B. Rhodium-Catalyzed
Asymmetric N-H Functionalization of Quinazolinones with Allenes
and Allylic Carbonates: The First Enantioselective Formal Total
Synthesis of (-)-Chaetominine. Chem. Eur. J. 2017, 23, 18156-18160.
(8) Liang, L.; Xie, M.-S.; Qin, T.; Zhu, M.; Qu, G.-R.; Guo, H.-M.
Regio- and Enantioselective Synthesis of Chiral Pyrimidine Acyclic
Nucleosides via Rhodium-Catalyzed Asymmetric Allylation of
Pyrimidines. Org. Lett. 2017, 19, 5212-5215.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
9
Supporting Information. Detailed experimental procedures,
characterization data, copies of 1H, 13C NMR spectra, HPLC
spectra and X-ray crystal structure of [L1-Rh(cod)]OTf and [L1-
Rh(MeC3H4)Cl]OTf. This material is available free of charge via
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
*E-mail: chkli@sjtu.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(9) Tang, S.-B.; Zhang, X.; Tu, H.-F.; You, S.-L. Regio- and
Enantioselective Rhodium-Catalyzed Allylic Alkylation of Racemic
Allylic Alcohols with 1,3-Diketones. J. Am. Chem. Soc. 2018, 140,
7737-7742.
(10) Ghorai, S.; Chirke, S. S.; Xu, W.-B.; Chen, J.-F.; Li, C. Cobalt-
Catalyzed Regio- and Enantioselective Allylic Amination. J. Am.
Chem. Soc. 2019, 141, 11430-11434.
This work is supported National Natural Science Foundation of
China (NSFC) (Grant 21602130) and Shanghai Jiao Tong
University. We thank Prof. Yong Jian Zhang for the helpful
discussion.
REFERENCES
(11) For
a general review on Ir-catalyzed asymmetric allylic
(1) (a) Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-
Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96, 395-422. (b)
Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed
Allylic Alkylations: Applications in Total Synthesis. Chem. Rev. 2003,
103, 2921-2943. (c) Lu, Z.; Ma, S. Metal-Catalyzed Enantioselective
Allylation in Asymmetric Synthesis. Angew. Chem. Int. Ed. 2008, 47,
258-297. For a recent book, see: (d) Transition Metal Catalyzed
Enantioselective Allylic Substitution in Organic Synthesis, U.
Kazmaier, Ed. Springer Verlag: Berlin and Heidelberg, Germany, 2012.
(2) For recent reviews on rhodium-catalyzed asymmetric allylations,
see: (a) Turnbull, B. W. H.; Evans, P. A. Asymmetric Rhodium-
Catalyzed Allylic Substitution Reactions: Discovery, Development and
Applications to Target-Directed Synthesis. J. Org. Chem. 2018, 83,
11463-11479. (b) Thoke, M. B.; Kang, Q. Rhodium-Catalyzed
Allylation Reactions. Synthesis 2019, 51, 2585-2631. (c) Koschker, P.;
Breit, B. Branching Out: Rhodium-Catalyzed Allylation with Alkynes
and Allenes. Acc. Chem. Res. 2016, 49, 1524-1536.
(3) For selected examples, see: (a) Evans, P. A.; Nelson, J. D.
Regioselective Rhodium-Catalyzed Allylic Alkylation with a Modified
Wilkinson's Catalyst. Tetrahedron Lett. 1998, 39, 1725-1728. (b)
Evans, P. A.; Nelson, J. D. Conservation of Absolute Configuration in
the Acyclic Rhodium-Catalyzed Allylic Alkylation Reaction: Evidence
for an Enyl (σ+π) Organorhodium Intermediate. J. Am. Chem. Soc.
1998, 120, 5581-5582. (c) Evans, P. A.; Robinson, J. E.; Nelson, J. D.
Enantiospecific Synthesis of Allylamines via the Regioselective
Rhodium-Catalyzed Allylic Amination Reaction. J. Am. Chem. Soc.
1999, 121, 6761-6762. (d) P. A. Evans, Leahy, D. K. Regioselective
and Enantiospecific Rhodium-Catalyzed Intermolecular Allylic
Etherification with Ortho-Substituted Phenols. J. Am. Chem. Soc. 2000,
122, 5012-5013. (e) Evans, P. A.; Uraguchi, D. Regio- and
Enantiospecific Rhodium-catalyzed Arylation of Unsymmetrical
Fluorinated Acyclic Allylic Carbonates: Inversion of Absolute
Configuration. J. Am. Chem. Soc. 2003, 125, 7158-7159.
substitution, see: (a) Iridium-Catalyzed Asymmetric Allylic
Substitution Reactions. Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.;
Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855-1969. For
reviews on Ir/Phosphoramidite catalysts, see: (b) Hartwig, J. F.;
Stanley, L. M. Mechanistically Driven Development of Iridium
Catalysts for Asymmetric Allylic Substitution. Acc. Chem. Res. 2010,
43, 1461-1475. (c) Qu, J.; Helmchen, G. Applications of Iridium-
Catalyzed Asymmetric Allylic Substitution Reactions in Target-
Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539-2555. For
Ir/(Phosphoramidite, Olefin) catalysts, see: (d) Rössler, S. L.; Petrone,
D. A.; Carreira, E. M. Iridium-Catalyzed Asymmetric Synthesis of
Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin)
Ligands. Acc. Chem. Res. 2019, 52, 2657–2672. For Krische’s Ir
catalyst, see: (e) Meza, A. T.; Wurm, T.; Smith, L.; Kim, S. W.; Zbieg,
J. R.; Stivala, C. E.; Krische, M. J. Amphiphilic π-Allyliridium C,O
Benzoates Enable Regio- and Enantioselective Amination of Branched
Allylic Acetates Bearing Linear Alkyl Groups. J. Am. Chem. Soc. 2018,
140, 1275-1279. (f) Kim, S. W.; Schwartz, L. A.; Zbieg, J. R.; Stivala,
C. E.; Krische, M. J. Regio- and Enantioselective Iridium-Catalyzed
Amination of Racemic Branched Alkyl-Substituted Allylic Acetates
with Primary and Secondary Aromatic and Heteroaromatic Amines. J.
Am. Chem. Soc. 2019, 141, 671-676. (g) Kim, S. W.; Schempp, T. T.;
Zbieg, J. R.; Stivala, C. E.; Krische, M. J. Regio- and Enantioselective
Iridium-Catalyzed N-Allylation of Indoles and Related Azoles with
Racemic Branched Alkyl-Substituted Allylic Acetates. Angew. Chem.
Int. Ed. 2019, 58, 7792-7766.
(12) (a) Takeuchi, R.; Kashio, M. Iridium Complex-Catalyzed Allylic
Alkylation of Allylic Esters and Allylic Alcohols: Unique Regio- and
Stereoselectivity. J. Am. Chem. Soc. 1998, 120, 8647-8655. (b)
Takeuchi, R.; Shiga, N. Complete Retention of Z Geometry in Allylic
Substitution Catalyzed by an Iridium Complex. Org. Lett. 1999, 1, 265-
268. (c) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N.
Iridium Complex-Catalyzed Allylic Amination of Allylic Esters. J.
Am. Chem. Soc. 2001, 123, 9525-9534.
ACS Paragon Plus Environment