ChemComm
Communication
Finally, it is worth noting that whereas for 1ÁZnSiF6 and 2ÁZnSiF6
the chiral pores are hydrophobic, in the case of 3ÁZnSiF6 they are
hydrophilic owing to the convergent orientation of the OH groups.
In conclusion, considering the pillar formed upon bridging of Zn2+
cations by SiF62À anions as an infinite tecton, using enantiomerically
pure bis-monodentate organic tectons a series of homochiral 3D
cuboid architectures were designed and generated. Owing to the
localisation of the chiral centres, the porous crystals display chiral
channels occupied by solvent molecules. With the aim of forming
robust crystalline materials, the replacement of Zn(II) by Co(II) or Cu(II)
and of Si(IV) by Ti(IV) or Sn(IV) is currently under investigation.
We thank the University of Strasbourg, the Institut Universitaire
de France, the International centre for Frontier Research in Chemistry
`
(icFRC, scholarship to P.L.), the C.N.R.S. and the Ministere de
´
l’Enseignement Superieur et de la Recherche for financial support.
Notes and references
1 (a) B. F. Abrahams, B. F. Hoskins and R. Robson, J. Am. Chem. Soc.,
1991, 113, 3606; (b) S. R. Batten and R. Robson, Angew. Chem., Int. Ed.,
1998, 37, 1460.
2 (a) S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460;
(b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe
and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319; (c) S. Kitagawa, R. Kitaura
Fig. 4 Views along the c (a, c and d) and a (b) axes of a portion of the X-ray
structure of the cuboid architecture formed by combining tecton 2 with ZnSiF6.
The view along the c axis (a) clearly shows that in consecutive planes, tecton 2
adopts the same anticlockwise orientation (c and d).
´
and S. I. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334; (d) G. Ferey,
C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 2005,
38, 218; (e) C. Janiak and J. K. Vieth, New J. Chem., 2010, 34, 2366;
( f ) W. L. Leong and J. J. Vittal, Chem. Rev., 2011, 111, 688; (g) G. K. Kole
and J. J. Vittal, Chem. Soc. Rev., 2013, 42, 1755; (h) Themed issue on
metal–organic frameworks, Chem. Soc. Rev., 2009, 38(5); (i) Metal–Organic
Frameworks special issue, Chem. Rev., 2012, 112(2).
3 (a) Y. Cui, H. L. Ngo, P. S. White and W. Lin, Inorg. Chem., 2003, 42, 652;
(b) C.-D. Wu and W. Lin, Angew. Chem., Int. Ed., 2005, 44, 1958; (c) S. Jung,
S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, Nature,
2000, 404, 982; (d) C.-D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc.,
2005, 127, 8940; (e) M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012,
112, 1196; ( f ) J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869;
(g) M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park and
M. J. Rosseinsky, Chem. Commun., 2008, 1287; (h) L. Sbircea, N. D.
Sharma, W. Clegg, R. W. Harrington, P. N. Horton, M. B. Hursthouse,
D. C. Apperley, D. R. Boyd and S. L. James, Chem. Commun., 2008, 5538;
(i) C. Valente, E. Choi, M. E. Belowich, C. J. Doonan, Q. Li, T. B. Gasa,
Y. Y. Botros, O. M. Yaghi and J. F. Stoddart, Chem. Commun., 2010,
¨
46, 4911; ( j) D. Ecija, K. Seufert, D. Heim, W. Auwaarter, C. Aurisicchio,
C. Fabbro, D. Bonifazi and J. V. Barth, ACS Nano, 2010, 4, 4936.
4 (a) M. Simard, D. Su and J. D. Wuest, J. Am. Chem. Soc., 1991,
113, 4696; (b) S. Mann, Nature, 1993, 365, 499; (c) M. W. Hosseini,
Chem. Commun., 2005, 5825.
5 (a) M. W. Hosseini, Acc. Chem. Res., 2005, 38, 313; (b) M. W. Hosseini,
CrystEngComm, 2004, 6, 318.
6 (a) R. A. J. Driessen, F. B. Hulsbergen, W. J. Vermin and J. Reedijk,
Inorg. Chem., 1982, 21, 3594; (b) L. R. MacGillivray, S. Subramanian
and M. J. Zaworotko, Chem. Commun., 1994, 1325; (c) S. Subramanian
and M. J. Zaworotko, Angew. Chem., Int. Ed. Engl., 1995, 34, 2127;
(d) S.-I. Noro, S. Kitagawa, M. Kondo and K. Seki, Angew. Chem., Int.
Ed., 2000, 39, 2082; (e) S.-I. Noro, R. Kitaura, M. Kondo, S. Kitagawa,
T. Ishii, H. Matsuzaka and M. Yamashita, J. Am. Chem. Soc., 2002,
124, 2568; ( f ) M.-C. Suen and J.-C. Wang, Struct. Chem., 2006, 17, 315;
(g) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr,
P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko, J. Am. Chem.
Soc, 2012, 134, 3663; (h) P. Nugent, V. Rhodus, T. Pham, B. Tudor,
K. Forrest, L. Wojtas, B. Space and M. Zaworotko, Chem. Commun.,
2013, 49, 1606.
7 (a) M.-J. Lin, A. Jouaiti, N. Kyritsakas and M. W. Hosseini, CrystEngComm,
2009, 11, 189; (b) M.-J. Lin, A. Jouaiti, D. Pocic, N. Kyritsakas, J.-M. Planeix
and M. W. Hosseini, Chem. Commun., 2010, 46, 112; (c) M.-J. Lin, A. Jouaiti,
N. Kyritsakas and M. W. Hosseini, CrystEngComm, 2010, 12, 67;
(d) M.-J. Lin, A. Jouaiti, N. Kyritsakas and M. W. Hosseini, CrystEngComm,
2011, 13, 776; (e) M.-J. Lin, A. Jouaiti, P. Grosshans, N. Kyritsakas and
M. W. Hosseini, Chem. Commun., 2011, 47, 7635.
Fig. 5 Views along the c (a, c and d) and a (b) axes of a portion of the X-ray
structure of the cuboid architecture formed by combining the tecton 3 with
ZnSiF6. The view along the c axis (a) clearly shows that in consecutive planes,
tecton 3 adopts anticlockwise (c) and clockwise (d) orientations.
consecutive hexa-coordinated Zn2+ cations adopting an octa-
hedral coordination geometry by SiF62À anions, by four organic
tectons 1, 2 or 3.
For the cuboid architectures, whereas for 1ÁZnSiF6 (Fig. 3c
and d) and 3ÁZnSiF6 (Fig. 5c and d) within the consecutive
ab planes along the c axis, the organic tectons 1 or 3 are
clockwise and anticlockwise oriented, in the case of 2ÁZnSiF6
(Fig. 4c and d) they are only anticlockwise disposed.
c
4470 Chem. Commun., 2013, 49, 4468--4470
This journal is The Royal Society of Chemistry 2013