Communication
ChemComm
7 E. Gazit, Chem. Soc. Rev., 2007, 36, 1263.
8 (a) M. Ikeda, T. Tanida, T. Yoshii and I. Hamachi, Adv. Mater., 2011,
23, 2819; (b) A. J. Wain, H. N. L. Do, H. S. Mandal, H. B. Kraatz and
F. Zhou, J. Phys. Chem. C, 2008, 112, 14513.
9 (a) E. C. B. Johnson and S. B. H. Kent, J. Am. Chem. Soc., 2006,
128, 6640; (b) P. E. Dawson, T. W. Muir, I. Clark-Lewis and
S. B. H. Kent, Science, 1994, 266, 776; (c) S. B. H. Kent, Chem. Soc.
Rev., 2009, 38, 338; (d) Q. Wan, J. Chen, Y. Yuan and
S. J. Danishefsky, J. Am. Chem. Soc., 2008, 130, 15814.
10 J. P. Jung, J. L. Jones, S. A. Cronier and J. H. Collier, Biomaterials,
2008, 29, 2143.
11 B. H. Hu, J. Su and P. B. Messersmith, Biomacromolecules, 2009,
10, 2194.
12 (a) Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman and
C. R. Bertozzi, J. Am. Chem. Soc., 1999, 121, 11684; (b) S. Batjargal,
Y. J. Wang, J. M. Goldberg, R. F. Wissner and E. J. Petersson, J. Am.
Chem. Soc., 2012, 134, 9172; (c) M. A. Shmilovici, K. Mandal,
Z. P. Gates, N. B. Phillips, M. A. Weiss and S. B. H. Kent, J. Am.
Chem. Soc., 2013, 135, 3173.
13 (a) J. Chen, Q. Wan, Y. Yuan, J. Zhu and S. J. Danishefsky, Angew.
Chem., Int. Ed., 2008, 47, 8521; (b) J. Hentschel, E. Krause and
H. G. Borner, J. Am. Chem. Soc., 2006, 128, 7722; (c) K. M. Cergol,
R. E. Thompson, L. R. Malins, P. Turner and R. J. Payne, Org. Lett.,
2014, 16, 290; (d) J. Dheur, N. Ollivier, A. Vallin and O. Melnyk,
J. Org. Chem., 2011, 76, 3194; (e) P. Siman, S. V. Karthikeyan and
A. Brik, Org. Lett., 2012, 14, 1520.
Fig. 4 AFM images indicate the nanofibrillar structures of the self-assembled
gels of (A) NmYCG, (C) NmFC(SePh)G and (D) (NmFC)2. (B) TEM image
indicates the nanotubular structure of the self-assembled gels NmYCG with
an inner diameter of 20 nm and outer diameter of 150 nm.
14 (a) G. A. Lemieux and C. R. Bertozzi, Trends Biotechnol., 1998, 16, 506;
(b) E. C. Rodriguez, K. A. Winans, D. S. King and C. R. Bertozzi, J. Am.
Chem. Soc., 1997, 119, 9905; (c) M. J. Weissenborn, R. Castangia,
J. W. Wehner, R. Sardzik, T. K. Lindhorst and S. L. Flitsch, Chem.
Commun., 2012, 48, 4444; (d) G. M. Fang, J.-X. Wang and L. Liu,
Angew. Chem., Int. Ed., 2012, 124, 10493.
15 T. Durek and P. F. Alewood, Angew. Chem., Int. Ed., 2011, 50, 12042.
16 M. J. Dirx, P. A. Van den Brandt, R. A. Goldbohm and L. H. Lumey,
Cancer, 2003, 97, 46.
17 N. Couto, N. Malys, S. J. Gaskell and J. Barber, J. Proteome Res., 2013,
12, 2885.
18 J. Lin, J. E. Manson, J. Selhub, J. E. Buring and S. M. Zhang, Cancer
Res., 2007, 67, 11123.
19 (a) Z. Yang, G. Liang, L. Wang and B. Xu, J. Am. Chem. Soc., 2006,
128, 3038; (b) L. Chen, S. Revel, K. Morris, L. C. Serpell and
D. J. Adams, Langmuir, 2010, 26, 13466; (c) H. Wang, C. Yang,
M. Tan, L. Wang, D. Konga and Z. Yang, Soft Matter, 2011,
7, 3897; (d) S. K. M. Nalluri and R. V. Ulijn, Chem. Sci., 2013, 4, 3699.
20 S. Singh, F. Topuz, K. Hahn, K. Albrecht and J. Groll, Angew. Chem.,
Int. Ed., 2013, 52, 3000.
insight into the NCL driven self-assembly process. We have also
shown the redox active dynamic peptide gels, which are formed
via the oxidation and reduction of the Nmoc-protected peptide
synthesized via NCL reactions. Here, gel–sol transition is highly
dependent on the oxidation and reduction of cysteine and
cysteine based peptides. Peptides are self-assembled via hydrogen
bonding and p–p stacking interactions, and peptides are redox
active in nature. Here, selenoester mediated NCL reactions are
responsible for nanofibrillar structure.
AKD sincerely acknowledges CSIR, New Delhi, India, for
financial support. DBR and IM are indebted to CSIR, New Delhi,
India, for their fellowships. We thank SAIF, IITB and SAIF,
NEHU, Shillong for the assistance of EM facility.
21 X. Miao, W. Cao, W. Zheng, J. Wang, X. Zhang, J. Gao, C. Yang,
D. Kong, H. Xu, L. Wang and Z. Yang, Angew. Chem., Int. Ed., 2013,
52, 7781.
22 C. S. Chen, T. J. Ji, X. D. Xu, X. Z. Zhang and R. X. Zhuo, Macromol.
Rapid Commun., 2010, 31, 1903.
23 (a) E. F. Banwell, E. S. Abelardo, D. J. Adams, M. A. Birchall, A. Corrigan,
A. M. Donald, M. Kirkland, L. C. Serpell, M. F. Butler and D. N. Woolfson,
Nat. Mater., 2009, 8, 596; (b) S. G. Tarasov, V. Gaponenko, O. M. Z.
Howard, Y. Chen, J. J. Oppenheim, M. A. Dyba, S. Subramaniam, Y. Lee,
C. Michejda and N. I. Tarasova, Proc. Natl. Acad. Sci. U. S. A., 2011,
108, 9798; (c) L. Qin, P. Duan, F. Xie, L. Zhang and M. Liu, Chem.
Commun., 2013, 49, 10823.
Notes and references
1 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418.
2 R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664.
3 M. M. Stevens and J. H. George, Science, 2005, 310, 1135.
4 J. Kopecek and J. Yang, Angew. Chem., Int. Ed., 2012, 51, 7396.
5 J. D. Tovar, Acc. Chem. Res., 2013, 46, 1527.
6 (a) A. Ghosh, M. Haverick, K. Stump, X. Yang, M. F. Tweedle and
J. E. Goldberger, J. Am. Chem. Soc., 2012, 134, 3647; (b) R. P. Nagarkar,
R. A. Hule, D. J. Pochan and J. P. Schneider, J. Am. Chem. Soc., 2008,
130, 4466; (c) I. Hwang, W. S. Jeon, H. J. Kim, D. Kim, H. Kim,
N. Selvapalam, N. Fujita, S. Shinkai and K. Kim, Angew. Chem., Int. 24 (a) S. Basak, J. Nanda and A. Banerjee, Chem. Commun., 2013,
Ed., 2007, 119, 214; (d) A. M. Kloxin, A. M. Kasko, C. N. Salinas and
K. S. Anseth, Science, 2009, 324, 59; (e) M. O. Guler and S. I. Stupp,
J. Am. Chem. Soc., 2007, 129, 12082.
49, 6891; (b) I. Maity, D. B. Rasale and A. K. Das, Soft Matter,
2012, 8, 5301.
25 A. K. Das, R. Collins and R. V. Ulijn, Small, 2008, 4, 279.
11400 | Chem. Commun., 2014, 50, 11397--11400
This journal is ©The Royal Society of Chemistry 2014