Organic Letters
Letter
2016, 52, 6193−6196. (g) Liu, H.; Tan, C.-H. Tetrahedron Lett. 2007,
48, 8220−8222.
REFERENCES
■
(1) For selected recent reviews and examples on aerobic oxidation in
catalysis: (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.;
Kozlowski, M. C. Chem. Rev. 2013, 113, 6234−6458. (b) Wang, D.;
Weinstein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636−
2679. (c) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851−
863. (d) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756−
1766. (e) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008, 6,
4083−4088. (f) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev.
2005, 105, 2329−2363. (g) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem.
Soc. Rev. 2012, 41, 3381−3430.
(2) For reviews and examples on the aerobic copper-catalyzed
Glaser−Hay couplings: (a) Siemsen, P.; Livingston, R. C.; Diederich, F.
Angew. Chem., Int. Ed. 2000, 39, 2632−2637. (b) Hay, A. S. J. Org.
Chem. 1960, 25, 1275−1276. (c) Hay, A. S., II J. Org. Chem. 1962, 27,
3320−3321.
(3) For selected examples of aerobic copper-catalyzed Chan−Lam
couplings: (a) Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.;
Sproules, S.; Watson, A. J. B. J. Am. Chem. Soc. 2017, 139, 4769−4779.
(b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.;
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941−2944.
(c) Shade, R. E.; Hyde, A. M.; Olsen, J.-C.; Merlic, C. A. J. Am. Chem.
Soc. 2010, 132, 1202−1203. (d) Quach, T. D.; Batey, R. A. Org. Lett.
2003, 5, 4397−4400.
(4) For selected examples and reviews on aerobic copper-catalyzed
C−H functionalizations: (a) King, A. E.; Huffman, L. M.; Casitas, A.;
Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068−
12073. (b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int.
Ed. 2011, 50, 11062−11087. (c) Liu, C.; Zhang, H.; Shi, W.; Lei, A.
Chem. Rev. 2011, 111, 1780−1824.
(11) For examples of nonaerobic oxidation of halide salts in
iodolactonizations: (a) Firouzabadi, H.; Iranpoor, N.; Kazemi, S.
Can. J. Chem. 2009, 87, 1675−1681. (b) Firouzabadi, H.; Iranpoor, N.;
Kazemi, S.; Ghaderi, A.; Garzan, A. Adv. Synth. Catal. 2009, 351, 1925−
1932. (c) Higgs, D. E.; Nelen, M. I.; Detty, M. R. Org. Lett. 2001, 3,
349−352. (d) Inamoto, K.; Yamada, T.; Kato, S.; Kikkawa, S.; Kondo,
Y. Tetrahedron 2013, 69, 9192−9199.
(12) Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Angew. Chem.,
Int. Ed. 2018, 57, 2296−2306. For every product formation, two
photoredox cycles are required. Therefore, the final turnover number is
calculated based on the product yield (excluding the background
reaction) divided by the catalyst loading times two.
(13) For an elegant and recent example of synthetic utilization of
triiodide species to control iodine release: Wappes, E. A.; Fosu, S. C.;
Chopko, T. C.; Nagib, D. A. Angew. Chem., Int. Ed. 2016, 55, 9974−
9978. Our UV−vis studies revealed that a large amount of triiodide
species was already generated at the 5 min interval. The peak intensity
of this species remained the same until the 20th min.
(14) Our UV−vis studies from control and stoichiometric mixing of
Cu(OAc)2 and potassium iodide clearly indicated the formation of a
new triiodide intermediate.
(15) (a) Deng, Y.; Zhang, G.; Qi, X.; Liu, C.; Miller, J. T.; Kropf, A. J.;
Bunel, E. E.; Lan, Y.; Lei, A. Chem. Commun. 2015, 51, 318−321. For
specific examples of Cu(II) insertion into alkenes: (b) Miller, Y.; Miao,
L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149−
12156. (c) Bovino, M. T.; Liwosz, T. W.; Kendel, N. E.; Miller, Y.;
Tyminska, N.; Zurek, E.; Chemler, S. R. Angew. Chem., Int. Ed. 2014, 53,
6383−6387.
(16) For a review and examples on related halogen abstraction
processes in copper catalysis: (a) Chemler, S. R.; Bovino, M. T. ACS
Catal. 2013, 3, 1076−1091. (b) Bovino, M. T.; Chemler, S. R. Angew.
(5) For selected reviews on photoredox catalysis: (a) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322−5363.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
102−113. (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016,
116, 10035−10074. (d) Romero, N. A.; Nicewicz, D. A. Chem. Rev.
2016, 116, 10075−10166.
̈
Chem., Int. Ed. 2012, 51, 3923−3927. (c) Gottlich, R. Synthesis 2000,
̈
2000, 1561−1564. (d) Heuger, G.; Kalsow, S.; Gottlich, R. Eur. J. Org.
Chem. 2002, 2002, 1848−1854. (e) Wu, F.; Stewart, S.; Ariyarathna, J.
P.; Li, W. ACS Catal. 2018, 8, 1921−1925.
(17) For an elegant study on nucleophilicity impacting the rate of
halocyclization: Ashtekar, K. D.; Vetticatt, M.; Yousefi, R.; Jackson, J.
E.; Borhan, B. J. Am. Chem. Soc. 2016, 138, 8114−8119.
(6) For selected recent reviews and examples on aerobic photoredox
catalysis: (a) Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R.
J. J. Am. Chem. Soc. 2010, 132, 1464−1465. (b) Freeman, D. B.; Furst,
L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94−97.
(c) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.
Chem. Commun. 2011, 47, 2360−2362. (d) Rueping, M.; Zhu, S.;
Koenigs, R. M. Chem. Commun. 2011, 47, 12709−12711. (e) Xuan, J.;
Cheng, Y.; An, J.; Lu, L.-Q.; Zhang, X.-X.; Xiao, W.-J. Chem. Commun.
2011, 47, 8337−8339. (f) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.;
Rong, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2011, 50, 7171−
7175. (g) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.;
Jørgensen, K. A.; Xiao, W.-J. Angew. Chem. 2012, 124, 808−812.
(h) Zhu, M.; Zheng, N. Synthesis 2011, 2011, 2223−2236. (i) Hari, D.
(18) In addition to the substrate scope presented here, we generally
observed that the photoredox conditions are more robust for tolerance
of functional groups such as nitro, amide, ketone, azide, and aldehyde.
(19) (a) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767−1775. (b) Everson,
D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793−4798. (c) Everson, D.
A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920−921.
(d) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012, 134,
6146−6159. (e) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135,
16192−16197. (f) Anka-Lufford, L. L.; Huihui, K. M. M.; Gower, N. J.;
Ackerman, L. K. G.; Weix, D. J. Chem. - Eur. J. 2016, 22, 11564−11567.
(20) (a) Wang, S.; Qian, Q.; Gong, H. Org. Lett. 2012, 14, 3352−3355.
(b) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015, 137,
11562−11565. (c) Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org.
Lett. 2011, 13, 2138−2141. (d) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.;
Gong, H. Org. Lett. 2012, 14, 3044−3047. (e) Chen, H.; Jia, X.; Yu, Y.;
Qian, Q.; Gong, H. Angew. Chem., Int. Ed. 2017, 56, 13103−13106.
(21) (a) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.;
Reisman, S. E. J. Am. Chem. Soc. 2017, 139, 5684−5687. (b) Kadunce,
N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137, 10480−10483.
(c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc.
2013, 135, 7442−7445.
̈
P.; Konig, B. Org. Lett. 2011, 13, 3852−3855.
(7) (a) Evans, R. W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2013, 135, 16074−16077. (b) Alom, N.-E.; Wu, F.; Li,
W. Org. Lett. 2017, 19, 930−933. (c) Alom, N.-E.; Rina, Y. A.; Li, W.
Org. Lett. 2017, 19, 6204−6207.
(8) (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int.
Ed. 2012, 51, 10938−10953. (b) Dowle, M. D.; Davies, D. I. Chem. Soc.
Rev. 1979, 8, 171−197. (c) Ranganathan, S.; Muraleedharan, K. M.;
Vaish, N. K.; Jayaraman, N. Tetrahedron 2004, 60, 5273−5308.
(9) (a) Danishefsky, S.; Schuda, P. F.; Kitahara, T.; Etheredge, S. J. J.
Am. Chem. Soc. 1977, 99, 6066−6075. (b) Zhou, Q.; Snider, B. B. Org.
Lett. 2008, 10, 1401−1404. (c) Corey, E. J.; Weinshenker, N. M.;
Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675−5677.
(10) (a) Bartlett, P. A.; Richardson, D. P.; Myerson, J. J. Am. Chem.
Soc. 1978, 100, 3950−3952. (b) Haas, J.; Piguel, S.; Wirth, T. Org. Lett.
2002, 4, 297−300. (c) Haas, J.; Bissmire, S.; Wirth, T. Chem. - Eur. J.
2005, 11, 5777−5785. (d) Meng, C.; Liu, Z.; Liu, Y.; Wang, Q. Org.
Biomol. Chem. 2015, 13, 6766−6772. (e) Pels, K.; Dragojlovic, V.
(f) Kang, Y.-B.; Chen, X.-M.; Yao, C.-Z.; Ning, X.-S. Chem. Commun.
(22) For a previous synthesis of product 36, please see reference:
Roth, S.; Stark, C. B. W. Chem. Commun. 2008, 6411−6413.
(23) For related synthesis of product 37 and 38: (a) Hemric, B. N.;
Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 5813−5816. (b) Shen,
K.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 13110−13116.
E
Org. Lett. XXXX, XXX, XXX−XXX