ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Efficient Enantioselective Synthesis
of Dihydropyrans Using a Chiral
N,N0‑Dioxide as Organocatalyst
Juhua Feng, Xuan Fu, Zhenling Chen, Lili Lin, Xiaohua Liu, and Xiaoming Feng*
Key Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
Received April 1, 2013
ABSTRACT
The bifunctional organocatalyst C3 N,N0-dioxide has been successfully applied to the asymmetric cascade Michael/hemiacetalization reaction of
r-substituted cyano ketones and β,γ-unsaturated r-ketoesters for the synthesis of multifunctionalized chiral dihydropyrans. The corresponding
products were obtained in excellent yields (up to 99%) with high to excellent enantioselectivities (up to 99% ee).
Dihydropyrans are important heterocyclic structures1
and have been found widely in natural and unnatural
products.2 These compounds exhibit intriguing biological
activities, such as cytotoxicity against some cancers, anti-
HCV entry, and anti-infectivity activities, and are widely
used in pharmaceuticals.3 Furthermore, dihydropyrans
are also useful intermediates for organic synthesis.4 There-
fore, this class of compounds has received significant
attention and results in a variety of synthetic methods,
such as multistep protocols via anionic, cationic, or radical
cyclization,5 [4 þ 2] cycloaddition,6 dioxanone Claisen
rearrangement,7 and ring-closing metathesis of enol
ethers.8 The cascade Michael/hemiacetalization reaction
(1) (a) Zheng, T.; Narayan, R. S.; Schomaker, J. M.; Borhan, B.
J. Am. Chem. Soc. 2005, 127, 6946. (b) Kang, S. Y.; Lee, K. Y.; Sung,
S. H.; Kim, Y. C. J. Nat. Prod. 2005, 68, 56. (c) Clarke, P. A.; Santos, S.
Eur. J. Org. Chem. 2006, 2045. (d) Li, J.; Ding, Y.; Li, X.-C.; Ferreira, D.;
Khan, S.; Smillie, T.; Khan, I. A. J. Nat. Prod. 2009, 72, 983. (e) Li, H.;
Loh, T. P. Org. Lett. 2010, 12, 2679. (f) Schmidt, E. Yu.; Trofimov, B. A.;
Zorina, N. V.; Mikhaleva, A. I.; Ushakov, I. A.; Skital’tseva, E. V.;
Kazheva, O. N.; Alexandrov, G. G.; Dyachenko, O. A. Eur. J. Org.
Chem. 2010, 6727. (g) Wang, J.; Crane, E. A.; Scheidt, K. A. Org. Lett.
2011, 13, 3086.
ꢀ
ꢀ
(2) (a) Marko, I. E.; Dobbs, A. P.; Scheirmann, V.; Chelle, F.;
Bayston, D. J. Tetrahedron Lett. 1997, 38, 2899. (b) Mangion, I. K.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696. (c) Yadav, J. S.;
Sunitha, V.; Reddy, B. V. S.; Das, P. P.; Gyanchander, E. Tetrahedron
Lett. 2008, 49, 855. (d) Magano, J. Chem. Rev. 2009, 109, 4398. (e) Sun,
J.; Xia, E. Y.; Wu, Q.; Yan, C. G. ACS Comb. Sci. 2011, 13, 421.
(3) (a) Lichtenthaler, F. W.; Nakamura, K.; Klotz, J. Angew. Chem.,
Int. Ed. 2003, 42, 5838. (b) Xu, Y.-M.; McLaughlin, S. P.; Gunatilaka,
A. A. L. J. Nat. Prod. 2007, 70, 2045. (c) Lin, S.; Shen, Y.-H.; Li, H.-L.;
Yang, X.-W.; Chen, T.; Lu, L.-H.; Huang, Z.-S.; Liu, R.-H.; Xu, X.-K.;
Zhang, W.-D.; Wang, H. J. Nat. Prod. 2009, 72, 650. (d) Zhang, H. J.;
Rothwangl, K.; Mesecar, A. D.; Sabahi, A.; Rong, L. J.; Fong, H. H. S.
J. Nat. Prod. 2009, 72, 2158.
(5) (a) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang,
C.-K. J. Am. Chem. Soc. 1989, 111, 5335. (b) Kim, S.; Fuchs, P. L. J. Am.
Chem. Soc. 1991, 113, 9864. (c) Stamos, D. P.; Kishi, Y. Tetrahedron
Lett. 1996, 37, 8643. (d) Semeyn, C.; Blaauw, R. H.; Hiemstra, H.;
Speckamp, W. N. J. Org. Chem. 1997, 62, 3426. (e) Lian, Y.; Hinkle, R. J.
J. Org. Chem. 2006, 71, 7071. (f) Liu, W.; Zhou, J.; Zheng, C.; Chen, X.;
Xiao, H.; Yang, Y.; Guo, Y.; Zhao, G. Tetrahedron 2011, 67, 1768. (g)
Lambert, R. F.; Hinkle, R. J.; Ammann, S. E.; Lian, Y.; Liu, J.; Lewis,
S. E.; Pike, R. D. J. Org. Chem. 2011, 76, 9269.
(6) (a) Danishefsky, S. J.; Selnick, H. G.; Armistead, D. M.; Wincott,
F. E. J. Am. Chem. Soc. 1987, 109, 8119. (b) Evans, D. A.; Johnson, J. S.;
Olhava, E. J. J. Am. Chem. Soc. 2000, 122, 1635. (c) Leconte, S.;
Dujardin, G.; Brown, E. Eur. J. Org. Chem. 2000, 639. (d) Jørgensen,
K. A. Angew. Chem., Int. Ed. 2000, 39, 3558. (e) Huang, Y.; Rawal, V. H.
J. Am. Chem. Soc. 2002, 124, 9662. (f) Krauss, I. J.; Mandal, M.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 5576. (g) Ashtekar,
K. D.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 5732. (h) Fujiwara,
K.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2012, 134, 5512.
(7) (a) Burke, S. D.; Armistead, D. M.; Schoenen, F. J. J. Org. Chem.
1984, 49, 4320. (b) Sherry, B. D.; Maus, L.; Laforteza, B. N.; Toste, F. D.
J. Am. Chem. Soc. 2006, 128, 8132.
(4) (a) Li, P.; Chai, Z.; Zhao, S.-L.; Yang, Y.-Q.; Wang, H.-F.;
Zheng, C.-W.; Cai, Y.-P.; Zhao, G.; Zhu, S.-Z. Chem. Commun. 2009,
7369. (b) Li, G.; Kaplan, M. J.; Wojtas, L.; Antilla, J. C. Org. Lett. 2010,
ꢀ
12, 1960. (c) Aleman, J.; Marcos, V.; Marzo, L.; Garcıa Ruano, J. L. Eur.
J. Org. Chem. 2010, 4482. (d) Zacuto, M. J.; Tomita, D.; Pirzada, Z.; Xu,
F. Org. Lett. 2010, 12, 684. (e) Wang, H.-F.; Li, P.; Cui, H.-F.; Wang,
X.-W.; Zhang, J.-K.; Liu, W.; Zhao, G. Tetrahedron 2011, 67, 1774. (f) Zhu,
X.-B.; Wang, M.; Wang, S.-Z.; Yao, Z.-J. Tetrahedron 2012, 68, 2041.
r
10.1021/ol400894j
XXXX American Chemical Society