3240
A. Tsatsaroni et al. / Tetrahedron Letters 54 (2013) 3238–3240
NCH3 peak at 3.06 ppm and the methylene H7 protons, provided
evidence for the E configuration of the molecule.
Systematic probing of the C7-C8-N-H9 dihedral angle of com-
pound 2 produced two energy minima, one for the E conformation
(58.4 kcal molꢁ1
)
and the other for the
Z
conformation
(59.8 kcal molꢁ1, Fig. 4). Similarly, compound 6 provides one en-
ergy minimum for the E (58.8 kcal molꢁ1) and one for the Z
(62.4 kcal molꢁ1). The energy barrier for the E/Z interconversion
for compound 6 is higher than that of 2, with an energy difference
of ꢀ5 kcal molꢁ1 (Fig. 5).
In conclusion, NMR studies indicate that the primary hydroxa-
mic acid derivatives 1a and 2, in their amide form, adopt preferen-
tially the E conformation (E/Z = 75/25) in DMSO at ꢀ25 °C, whereas
in their respective secondary N-methylated congeners 5 and 6, the
E conformer is the only one present in solution. These results are in
accordance with in silico theoretical calculations.
Given that the Z conformation is a prerequisite for complexa-
tion with a metal ion, the failure of the methylated hydroxamic
acid analogues 5 and 6 to produce a similar biological effect to their
congeners 1a and 2 might be attributed to the absence of the
respective Z conformer in the binding site of the metalloenzyme.
In the case of the active molecules 1a and 2, as the minor Z con-
former is complexed to the metal ion in the catalytic site of the en-
zyme, the E/Z equilibrium is shifted to the active conformer
Figure 3. Expansion of the 2D NOESY spectrum of compound 2.
(
)
inducing metalloenzyme activity
inhibition.
Acknowledgments
J.M.K. acknowledges the support of the Wellcome Trust (Grant
no. 092573).
Supplementary data
Figure 4. E (left) and Z (right) low energy conformations of bioactive compound 2.
Supplementary data (experimental procedures and spectral
data) associated with this article can be found, in the online ver-
References and notes
1. (a) Muri, E. M. F.; Nieto, M. J.; Sindelar, R. D.; Leal, J. M.; Williamson, J. S. Curr.
Med. Chem. 2002, 9, 1631–1653. and references cited therein; (b) Miller, M. J.
Chem. Rev. 1989, 89, 1563–1579. and references cited therein.
2. (a) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem. Rev. 1999, 99,
2735–2776. and references cited therein; (b) Baxter, A. D.; Bhogal, R.; Bird, J.;
Keily, J. F.; Manallack, D. T.; Montana, J. G.; Owen, D. A.; Pitt, W. R.; Watson, R. J.;
Wills, R. E. Bioorg. Med. Chem. Lett. 2001, 11, 1465–1468; (c) Ragno, R.; Mai, A.;
Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; Loidl, P.;
Brosch, G. J. Med. Chem. 2004, 47, 1351–1359. and references cited therein; (d)
Dai, Y.; Guo, Y.; Curtin, M. L.; Li, J.; Pease, L. J.; Guo, J.; Marcotte, P. A.; Glaser, K.
B.; Davidsen, S. K.; Michaelides, M. R. Bioorg. Med. Chem. Lett. 2003, 13, 3817–
3820.
3. (a) Summers, J. B.; Mazdiyasni, H.; Holms, J. H.; Ratajczyk, J. D.; Dyer, R. D.;
Carter, G. W. J. Med. Chem. 1987, 30, 574–580; (b) Summers, J. B.; Gunn, B. P.;
Mazdiyasni, H.; Goetze, A. M.; Young, P. R.; Bouska, J. B.; Dyer, R. D.; Brooks, D.
W.; Carter, G. W. J. Med. Chem. 1987, 30, 2121–2126; (c) Marks, P. A.; Richon, V.
M.; Rifkind, R. A. J. Natl. Cancer Inst. 2000, 92, 1210–1216.
Figure 5. Relative energy versus coordinate plot from a systematic study of the
CONH dihedral angle of the hydroxamate group.
4. Garcıa, B.; Ibeas, S.; Munoz, A.; Leal, J. M.; Ghinami, C.; Secco, F.; Venturini, M.
Inorg. Chem. 2003, 42, 5434–5441.
5. Senent, M. L.; Nino, A.; Munoz-Caro, A.; Ibeas, S.; Garcıa, B.; Leal, J. M.; Secco, F.;
Venturini, M. J. Org. Chem. 2003, 68, 6535–6542.
6. Bagno, A.; Comuzzi, C.; Scorrano, G. J. Am. Chem. Soc. 1994, 116, 916–924.
7. Garcia, B.; Ibeas, S.; Leal, J. M.; Secco, F.; Venturini, M.; Senent, M. L.; Nino, A.;
Munoz, C. Inorg. Chem. 2005, 44, 2908–2919.
8. (a) Raymond, K. N. Coord. Chem. Rev. 1990, 105, 135–153; (b)Chemistry and
Biology of Hydroxamic Acids; Kehl, H., Ed.; Karger: Basel, Switzerland, 1982.
9. (a) Fytas, C.; Zoidis, G.; Tzoutzas, N.; Taylor, M. C.; Fytas, G.; Kelly, J. M. J. Med.
Chem. 2011, 54, 5250–5254; (b) Fytas, C.; Zoidis, G.; Fytas, G. Tetrahedron 2008,
64, 6749–6754.
the E isomer. Finally, H9 and H10 of the E isomer are assigned to
the signals at 10.52 and 8.83 ppm, respectively. The above assign-
ments are in agreement with the 2D heteronuclear gHMBC spec-
trum, where a correlation between C8 and H9 is observed.
The same methodology was used for the assignment of the sig-
nals obtained for compound 6 (Supplementary data). Once again,
an NOE signal was observed between H10 (OH) at 10.05 ppm and
the H7 methylene, while the absence of an NOE between the