10.1002/anie.202007699
Angewandte Chemie International Edition
COMMUNICATION
first step of the reaction either gave a lower yield of 3g or
inhibited the reaction efficiently (Scheme 5, eq 2). Thus, a
radical pathway is possibly involved for the second step. Isolated
borane 4a could not convert to 3g under the standard conditions
or through the reaction with benzoquinone or KOtBu (Scheme 5,
eq 3 and 4). The results indicated that borane 4 is not the
intermediate for alkene 3. In addition, since the outcome of the
reaction strongly depends on the additives at the second step,
thus a common intermediate should be involved for their
formation.
Scheme 6. Proposed catalytic cycle
In conclusion, we have developed
a copper-catalyzed
regioselective C-H alkenylation and borylative alkylation of
quinoline N-oxides. Benzoquinone and KOtBu were identified as
the necessary additives at the second step of the reaction that
are crucial for the success of the reaction. A wide range of C2-
functionalized quinolines were obtained with good functional
group tolerance, which may find utilities in pharmaceuticals and
synthetic chemistry. We have also shown that for the first time,
the catalytically formed alkylcopper intermediate generated via
borylcupration of vinyl arenes can be captured by heterocyclic
N-oxides. Further mechanistic studies and the development of
new reactions with N-oxides as electrophiles are currently
ongoing in our laboratory.
Keywords: copper catalysis
•
quinoline N-oxides
•
borylcupration • alkenylation • borylative alkylation
[1]
[2]
a) S. Kumar, S. Bawa, H. Gupta, Mini Rev. Med. Chem. 2009, 9, 1648;
b) S. Vandekerckhove and M. D’hooghe, Bioorg. Med. Chem. 2015, 23,
5098.
a) M. E. Zwaagstra, S. H. H. F. Schoenmakers, P. H. J. Nederkoorn, E.
Gelens, H. Timmerman, M. -Q. Zhang, J. Med. Chem. 1998, 41, 1439;
b) V. S.Gopinath, J. Pinjari, R. T. Dere, A. Verma, P. Vishwakarma, R.
Shivahare, M. Moger, P. S. K. Goud, V. Ramanathan, P. Bose, M. V. S.
Rao, S. Gupta, S. K. Puri, D. Launay, D. Martin, Eur. J. Med. Chem.
2013, 69, 527; c) A. J. Saggiomo, S. Kano, T. Kikuchi, K. Okubo, M.
Shinbo, J. Med. Chem. 1972, 15, 989; d) A. Huang, A. Moretto, K. Janz,
M. Lowe, P. W. Bedard, S. Tam, L. Di, V. Clerin, N. Sushkova, B.
Tchernychev, D. H. H. Tsao, J. C. Keith, G. D. Shaw, R. G. Schaub, Q.
Wang, N. Kaila, J. Med. Chem. 2010, 53, 6003.
Scheme 5. Control experiments
On the basis of the above results and literatures,[13]
a
proposed catalytic cycle is shown in Scheme 6. Initially, the
copper alkoxide complex 10 reacts with B2pin2 to give a LCu-
Bpin intermediate 11. Regioselective addition of 11 to the alkene
1a gives alkylcopper intermediate 12. Nucleophilic attack of 12
to the iminium ion moiety in quinoline N-oxide 2b provides
intermediate 13, which reacts with B2pin2 to deliver intermediate
14 and regenerates the LCu-Bpin species 11. Intermediate 14
aromatizes to give 4a through elimination of BpinOH upon
treatment with KOtBu. In the presence of benzoquinone, 3g is
furnished. The detailed mechanism for 14 to 3g is not clear yet.
The reaction pathway involving elimination of CuOH in 13 to give
the borylated product 4a is unlikely. Since it can not explain how
3g is formed. We suggest that a comment intermediate 14 is
generated, which accounts for the formation of 3 and 4.
[3]
a) S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal, H. D.
Patel, RSC Adv. 2014, 4, 24463; b) D. Orozco, V. V. Kouznetsov, A.
Bermudez, L. Y. V. Mendez, A. R. M. Salgado, C. M. M. Gomez, RSC
Adv. 2020, 10, 4876.
[4]
[5]
J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, Chem. Review,
2012, 112, 2642.
a) H. Andersson, F. Almqvist, R. Olsson, Org. Lett. 2007, 9, 1335. b) H.
Andersson, T. S. L. Banchelin, S. Das, R. Olsson, F. Almqvist, Chem.
Commun. 2010, 46, 3384. c) X.-P. Chen, X.-L. Cui, F.-F. Yang, Y.-J.
Wu, Org. Lett. 2015, 17, 1445. d) L. Bering, A. P. Antonchick, Org. Lett.
2015, 17, 3134.
[6]
[7]
a) F. Zhang, X.-F. Duan, Org. Lett. 2011, 13, 6102. b) O. V. Larionov, D.
Stephens, A. Mfuh, G. Chavez, Org. Lett. 2014, 16, 864. c) W. Jo, J.
Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 9690.
a) A. P. Colleville, R. A. J. Horan, S. Olazabal, N. C. O. Tomkinson, Org.
Process Res. Dev. 2016, 20, 1283. b) W. Zhou, T. Miura, M. Murakami,
Angew. Chem. Int. Ed. 2018, 57, 5139.
[8]
[9]
R. Loska, K. Szachowicz, D. Szydlik, Org. Lett. 2013, 15, 5706.
a) L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005,
127, 18020. b) J.-P. Leclerc, K. Fagnou, Angew. Chem. Int. Ed. 2006,
45, 7781. c) K. S. Kanyiva, Y. Nakao, T. Hiyama, Angew. Chem. Int. Ed.
2007, 46, 8872. d) B. Xiao, Z.-J, Liu, L. Liu, Y. Fu, J. Am. Chem. Soc.
2013, 135, 616.
[10] a) H. Wang, X.-L. Cui, Y. Pei, Q.-Q. Zhang, J. Bai, D.-H. Wei, Y.-J. Wu,
Chem. Commun. 2014, 50, 14409; b) Z.-Y. Wu, H.-Y. Song, X.-L. Cui,
C. Pi, W.-W. Du, Y.-J. Wu, Org. Lett. 2013, 15, 1270; c) C.-W. Zhu, M.-
L. Yi, D.-H. Wei, X. Chen, Y.-J. Wu, X.-L. Cui, Org. Lett. 2014, 16, 1840.
[11] a) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130,
9254; b) J. -L. Wu, X. -L. Cui, L. -M. Chen, G. -J. Jiang, Y. -J. Wu, J.
Am. Chem. Soc. 2009, 131, 13888.
[12] For I2 or Brønsted acid promoted C2-alkenylation of quinoline to linear
alkenes, see a) Z. -H. Zhang, C. Pi, H. Tong, X. -L. Cui, Y. -J. Wu, Org.
Lett. 2017, 19, 440; b) H. Xia, Y. -H. Liu, P. Zhao, S. -H. Gou, J. Wang,
Org. Lett. 2016, 18, 1796; c) G. E. M. Crisenza, E. M. Dauncey, J. F.
Bower, Org. Biomol. Chem. 2016, 14, 5820.
This article is protected by copyright. All rights reserved.