Page 7 of 9
Journal of the American Chemical Society
Sustainable routes for the synthesis of renewable heteroatom-
Reusability of the Pt/P-TiO2. To examine the reusability of
the Pt/P-TiO2, the catalyst was recovered by centrifugation
and washed with methanol and ethyl ether (5 × 5 mL). After
drying under vacuum at 80 °C for 12 h, the recovered catalyst
was reused for the next run.
containing chemicals. ACS Sustainable Chem. Eng. 2018, 6, 5694-5707.
(2) (a) Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A.
Transformations of biomass-derived platform molecules: from high
added-value chemicals to fuels via aqueous-phase processing. Chem.
Soc. Rev. 2011, 40, 5266-5281. (b) Zhang, Z.; Huber, G. W. Catalytic
oxidation of carbohydrates into organic acids and furan chemicals.
Chem. Soc. Rev. 2018, 47, 1351-1390. (c) Mika, L. T.; Cséfalvay, E.;
Németh, Á. Catalytic conversion of carbohydrates to initial platform
chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505-
613. (d) Luo, W.; Sankar, M.; Beale, A. M.; He, Q.; Kiely, C. J.; Bruijnincx,
P. C. A.; Weckhuysen, B. M. High performing and stable supported
nano-alloys for the catalytic hydrogenation of levulinic acid to γ-
valerolactone. Nat. Commun. 2015, 6, 6540.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
Supporting Information
9
The Supporting Information is available free of charge on the
ACS Publications website.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Vidal, J. D.; Climent, M. J.; Concepcion, P.; Corma, A.; Iborra, S.;
Sabater, M. J. Chemicals from biomass: Chemoselective reductive
amination of ethyl levulinate with amines. ACS Catal. 2015, 5, 5812-
5821. (b) Touchy, A. S.; Siddiki, S. M. A. H.; Kon, K.; Shimizu, K. ACS
Catal. 2014, 4, 3045-3050. (c) Wu, C.; Zhang, H.; Yu, B.; Chen, Y.; Ke, Z.;
Guo, S.; Liu, Z. Lactate-based ionic liquid catalyzed reductive
amination/cyclization of keto acids under mild conditions: A metal-
free route to synthesize lactams. ACS Catal. 2017, 7, 7772-7776. (d)
Siddiki, S. M. A. H.; Touchy, A. S.; Bhosale, A.; Toyao, T.; Mahara, Y.;
Ohyama, J.; Satsuma, A.; Shimizu, K. Direct synthesis of lactams from
keto acids, nitriles, and H2 by heterogeneous Pt catalysts
ChemCatChem 2018, 10, 789-795. (e) Vidal, J. D.; Climent, M. J.; Corma,
A.; Concepcion, D. P.; Iborra, S. One-pot selective catalytic synthesis of
pyrrolidone derivatives from ethyl levulinate and nitro compounds.
ChemSusChem 2017, 10, 119-128.
(4) (a) Das, S.; Addis, D.; Knöpke, L. R.; Bentrup, U.; Junge, K.;
Brückner, A.; Beller, M. Selective catalytic monoreduction of
phthalimides and imidazolidine-2,4-diones. Angew. Chem. Int. Ed.
2011, 50, 9180-9184. (b) Du, X.-L.; He, L.; Zhao, S.; Liu, Y.-M.; Cao, Y.;
He, H.-Y.; Fan, K.-N. Hydrogen-independent reductive transformation
of carbohydrate biomass into γ-valerolactone and pyrrolidone
derivatives with supported gold catalysts. Angew. Chem. Int. Ed. 2011,
50, 7815-7819. (c) Ogiwara, Y.; Uchiyama, T.; Sakai, N. Reductive
amination/cyclization of keto acids using a hydrosilane for selective
production of lactams versus cyclic amines by switching of the indium
catalyst. Angew. Chem. Int. Ed. 2016, 55, 1864-1867.
The used materials, size distribution of Pt in the prepared
Pt/P-TiO2, CO-pulse titration results of the used Pt catalysts,
time-yield plots for the reductive amination of LA with n-
octylamine, activity of different catalysts, solvent effect,
reusability of the Pt/P-TiO2, TEM image and XPS spectra of the
recovered catalyst, GC-MS spectra of the generated
intermediate from butyl levulinate and n-octylamine, GC-MS
spectra of the intermediate generated from LA and n-
1
octylamine, H NMR and 13C NMR of the intermediate butyl 4-
(phenylamino)pentanoate, effect of different additive on the
catalytic activity of different catalysts, and the 1H NMR, 13C
NMR, and HRMS data for all synthesized products.
AUTHOR INFORMATION
Corresponding Author
*songjl@iccas.ac.cn
*hanbx@iccas.ac.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(5) (a) Wu, C.; Luo, X.; Zhang, H.; Liu, X.; Ji, G.; Liu, Z.; Liu, Z.
Reductive amination/cyclization of levulinic acid to pyrrolidones
versus pyrrolidines by switching the catalyst from AlCl3 to RuCl3
under mild conditions. Green Chem. 2017, 19, 3525-3529. (b) Wei, Y.;
Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J. Highly efficient transformation
of levulinic acid into pyrrolidinones by iridium catalysed transfer
hydrogenation. Chem. Commun. 2013, 49, 5408-5410. (c) Wei, Y.;
Wang, C.; Jiang, X.; Xue, D.; Liu, Z.-T.; Xiao, J. Catalyst-free
transformation of levulinic acid into pyrrolidinones with formic acid.
Green Chem. 2014, 16, 1093-1096.
This work was supported by National Natural Science
Foundation of China (21673249, 21733011), the National Key
Research
and
Development
Program
of
China
(2017YFA0403003), Beijing Municipal Science & Technology
Commission (Z181100004218004), Key Research Program of
Frontier Sciences of CAS (QYZDY-SSW-SLH013), and Youth
Innovation Promotion Association of CAS (2017043).
(6) (a) Manzer, L. E.; Herkes, F. E. Production of 5-methyl-1-
hydrocarbyl-2-pyrrolidone by reductive amination of levulinic acid.
U.S. Patent 2004/0192933A1, 2004. (b) Manzer, L. E. Production of 5-
REFERENCES
(1) (a) Meng, Q.; Hou, M.; Liu, H.; Song, J.; Han, B. Synthesis of
ketones from biomass-derived feedstock. Nat. Commun. 2017, 8,
14190. (b) Liang, G.; Wang, A.; Li, L.; Xu, G.; Yan, N.; Zhang, T.
Production of primary amines by reductive amination of biomass-
derived aldehydes/ketones. Angew. Chem. Int. Ed. 2017, 56, 3050-
3054. (c) Zeng, H.; Cao, D.; Qiu, Z.; Li, C.-J. Palladium-catalyzed formal
cross-coupling of diaryl ethers with amines: Slicing the 4-O-5 linkage
in lignin models. Angew. Chem. Int. Ed. 2018, 57, 3752-3757. (d)
Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to
high-value polymeric materials: Review and perspective. Chem. Rev.
2016, 116, 2275-2306. (e) Schutyser, W.; Renders, T.; Van den Bosch,
S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chemicals from lignin: an
interplay of lignocellulose fractionation, depolymerisation, and
upgrading. Chem. Soc. Rev. 2018, 47, 852-908. (f) Xia, Q.; Chen, Z.; Shao,
Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S. F.; Han, X.; Yang, S.; Wang, Y.
Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.
Nat. Commun. 2016, 7, 11162. (g) Deng, W.; Wang, Y.; Zhang, S.; Gupta,
K. M.; Hülsey, M. J.; Asakura, H.; Liu, L.; Han, Y.; Karp, E. M.; Beckham, G.
T.; Dyson, P. J.; Jiang, J.; Tanaka, T.; Wang, Y.; Yan, N. Catalytic amino
acid production from biomass-derived intermediates. Proc. Natl. Acad.
Sci. U. S. A. 2018, 115, 5093-5098. (h) Hülsey, M. J.; Yang, H.; Yan, N.
methyl-N-aryl-2-pyrrolidone
and
5-methyl-N-cycloalkyl-2-
pyrrolidone by reductive amination of levulinic acid with aryl amines.
U.S. Patent 6743819 B1, 2004. (c) Zhang, J.; Xie, B.; Wang, L.; Yi, X.;
Wang, C.; Wang, G.; Dai, Z.; Zheng, A.; Xiao, F.-S. Zirconium oxide
supported palladium nanoparticles as a highly efficient catalyst in the
hydrogenation-amination of levulinic acid to pyrrolidones.
ChemCatChem 2017, 9, 2661-2667. (d) Gao, G.; Sun, P.; Li, Y.; Wang, F.;
Zhao, Z.; Qin, Y.; Li, F. Highly stable porous-carbon-coated Ni catalysts
for the reductive amination of levulinic acid via an unconventional
pathway. ACS Catal. 2017, 7, 4927-4935.
(7) (a) Huang, Y.-B.; Dai, J.-J.; Deng, X.-J.; Qu, Y.-C.; Guo, Q.-X.; Fu, Y.
Ruthenium-catalyzed conversion of levulinic acid to pyrrolidines by
reductive amination. ChemSusChem 2011, 4, 1578-1581. (b) Wang, S.;
Huang, H.; Bruneau, C.; Fischmeister, C. Selective and efficient iridium
catalyst for the reductive amination of levulinic acid into pyrrolidones.
ChemSusChem 2017, 10, 4150-4154.
(8) (a) Murata, K.; Mahara, Y.; Ohyama, J.; Yamamoto, Y.; Arai, S.;
Satsuma, A. The metal-support interaction concerning the particle size
effect of Pd/Al2O3 on methane combustion. Angew. Chem. Int. Ed. 2017,
56, 15993-15997. (b) Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, K.;
Hara, M. Electronic effect of ruthenium nanoparticles on efficient
ACS Paragon Plus Environment