NJC
Paper
Tetrahedron, 2006, 62, 7213; (c) B. A. Trofimov,
A. I. Mikhaleva, E. Yu. Schmidt and L. N. Sobenina, Adv.
Heterocycl. Chem., 2010, 99, 209; (d) other reviews please see
ref. 6a, 7b and 8.
2 For selected examples: (a) D. P. O’Malley, K. Li, M. Maue,
A. L. Zografos and P. S. Baran, J. Am. Chem. Soc., 2007,
129, 4762; (b) C. C. Hughes, A. Prieto-Davo, P. R. Jensen and
W. Fenical, Org. Lett., 2008, 10, 629; (c) C. Teixeira,
F. Barbault, J. Rebehmed, K. Liu, L. Xie, H. Lu, S. Jiang,
B. Fan and F. Maurel, Bioinorg. Med. Chem., 2008, 16, 3039;
(d) M. Biava, G. C. Porretta, D. Deidda, R. Pompei, A. Tafi
and F. Manetti, Bioinorg. Med. Chem., 2004, 12, 1453;
(e) B. Forte, B. Malgesini, C. Piutti, F. Quartieri, A. Scolaro
and G. Papeo, Mar. Drugs, 2009, 7, 705; ( f ) A. Hall,
S. Atkinson, S. H. Brown, I. P. Chessell, A. Chowdhury,
G. M. P. Giblin, P. Goldsmith, M. P. Healy, K. S. Jandu,
M. R. Johnson, A. D. Michel, A. Naylor and J. A. Sweeting,
Bioorg. Med. Chem. Lett., 2007, 17, 1200; (g) A. Loudet and
K. Burgess, Chem. Rev., 2007, 107, 4891; (h) V. M. Domingo,
Scheme 2 A plausible mechanism of the synthesis of pyrroles via 1,3-dipolar
cycloaddition of azomethine ylides with ynones.
achieved for some substrates when the catalyst loading was
decreased to 10 mol% (Table 3, entries 9, 15, 18, and 22).
Due to the fact that silver mirror was found after the
completion of the reaction, we speculate the possible pathway
for this transformation although we failed to isolate the key
intermediate dihydropyrrole A. The dihydropyrrole molecules A
were formed first via AgOAc-catalyzed 1,3-dipolar cycloaddition
followed by a fast silver-catalyzed dehydrogenation process to
afford the corresponding pyrrole products (Scheme 2).12,13
´
Conclusions
C. Aleman, E. Brillas and L. Julia, J. Org. Chem., 2001,
66, 4058.
In summary, we have developed an efficient protocol for the
synthesis of 2,3,5-trisubstituted pyrroles via AgOAc-catalyzed
1,3-dipolar cycloaddition of azomethine ylides with ynones in
good yields (up to 89%). A possible reaction pathway for this
one-pot pyrroles preparation was proposed. Further application
of this novel method is still ongoing in our laboratory.
3 R. B. Thompson, FASEB J., 2001, 15, 1671.
4 For selected examples of the Knorr synthesis: (a) A. Alberola,
´
˜
A. G. Ortega, M. L. Sadaba and C. Sanudo, Tetrahedron,
1999, 55, 6555; (b) C. M. Shiner and T. D. Lash, Tetrahedron,
2005, 61, 11628.
5 For recent examples of the Paal–Knorr synthesis:
(a) A. Rahmatpour, J. Organomet. Chem., 2012, 712, 15;
(b) K. Aghapoor, L. Ebadi-Nia, F. Mohsenzadeh,
M. M. Morad, Y. Balavar and H. R. Darabi, J. Organomet.
Chem., 2012, 708–709, 25; (c) G. Minetto, L. F. Raveglia,
A. Sega and M. Taddei, Eur. J. Org. Chem., 2005, 5277;
(d) N. Azizi, A. Khajeh-Amiri, H. Ghafuri, M. Bolourtchian
and M. R. Saidi, Synlett, 2009, 2245.
General procedure for AgOAc catalyzed
1,3-dipolar cycloaddition of azomethine
ylides with ynones
Under a N2 atmosphere, AgOAc (10 mg, 0.06 mmol), PPh3
(31.5 mg, 0.12 mmol) and activated 4 Å MS were dissolved in
2 mL anhydrous THF and stirred at room temperature for about
1 h. Iminoesters 2 (0.6 mmol) were added and after the reaction
temperature was reduced to ꢀ40 1C, ynones 1 (0.3 mmol) were
added. Once starting material was consumed (monitored by
TLC), the mixture was concentrated to dryness and then the
residue was purified by column chromatography to give the
corresponding products 3.
6 (a) A. W. Trautwein, R. D. Su¨ßmuth and G. Jung, Bioorg.
Med. Chem. Lett., 1998, 8, 2381; (b) A. Herath and N. D. P.
Cosford, Org. Lett., 2010, 12, 5182.
´
7 For review: (a) V. Estevez, M. Villacampa and
´
J. C. Menendez, Chem. Soc. Rev., 2010, 39, 4402. For recent
examples: (b) D. Hong, Y. Zhu, Y. Li, X. Lin, P. Lu and
Y. Wang, Org. Lett., 2011, 13, 4668; (c) O. A. Attanasi, G. Favi,
F. Mantellini, G. Moscatelli and S. Santeusanio, J. Org.
Chem., 2011, 76, 2860; (d) C. V. Galliford and K. A.
Acknowledgements
´
Scheidt, J. Org. Chem., 2007, 72, 1811; (e) S. Lamande-
ˆ
Langle, M. Abarbri, J. Thibonnet, A. Duchene and
J. Parrain, Chem. Commun., 2010, 46, 5157.
This work was financially supported by the Fundamental
Research Funds for the Central Universities, the Shanghai
Committee of Science and Technology (No. 11DZ2260600),
the ‘‘Shu Guang’’ project of Shanghai Education Development
Foundation (No. 09SG28) and Natural Science Foundation of
China (No. 21172068).
¨
8 (a) I. Bauer and H. Knolker, Top. Curr. Chem., 2012, 309, 203
and references therein; (b) V. Cadierno and P. Crochet, Curr.
Org. Synth., 2008, 5, 343; (c) W. Liu, H. Jiang and L. Huang,
Org. Lett., 2010, 12, 312.
9 T. J. Donohoe, J. F. Bower and L. K. M. Chan, Org. Biomol.
Chem., 2012, 10, 1322.
10 (a) A. Padwa and W. H. Pearson, in The Chemistry of
Heterocyclic Compounds, ed. E. C. Taylor and P. Wipf, John
Wiley & Sons, Inc., New York, 2002, vol. 59; (b) O. V.
Larionov and A. D. Meijere, Angew. Chem., Int. Ed., 2005,
Notes and references
1 For reviews: (a) V. F. Ferreira, M.C B.V. de Souza,
A. C. Cunha, L. O. R. Pereira and M. L. G. Ferreira, Org.
Prep. Proced. Int., 2001, 33, 411; (b) F. Bellina and R. Rossi,
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2013
New J. Chem.