Journal of the American Chemical Society
Communication
studies of the transformation and attempts to isolate reaction
intermediates.
Scheme 2. Auxiliary Cleavage
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and characterization data for
new compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
containing indole (entry 9) and pyridine (entry 10) moieties
are fluorinated in good yields. The reaction is functional-group
tolerant, with carboxylate (entry 3), nitrile (entry 4), and nitro
groups (entry 7) compatible with the fluorination conditions.
For strongly electron-deficient substrates such as 4-nitro-
benzoyl and pyridyl derivatives (entries 7 and 10), the reaction
must be run in pyridine solvent to prevent decomposition of
product. However, somewhat longer reaction times are
required if pyridine is employed.
Optimization results in Table 1 show that, by increasing CuI
and AgF loading and reaction time, clean difluorination can be
obtained. Longer reaction times require the use of pyridine to
prevent decomposition of aminoquinoline amides. Difluorina-
tion examples are presented in Table 3. Similar to
monofluorination, electron-rich (entries 4, 5, 7), electron-
poor (entries 1−3, 6), and heterocyclic (entry 8) amides can be
efficiently difluorinated in good yields. Interestingly, difluori-
nation of meta-substituted amides is possible (entries 4, 7), but
contrasts with Pd-catalyzed C−H bond functionalization, where
substitution at more hindered positions is typically not
observed.17 The observation is consistent with results obtained
in the Cu-promoted sulfenylation of sp2 C−H bonds, where
functionalization of hindered positions is possible.14b
Fluorination of benzylamine derivatives is also possible by
using a picolinamide directing group (Scheme 1). However, the
reactions are less efficient, requiring 50 mol % CuI catalyst,
higher temperature, and DMPU solvent. Reasonable con-
versions could only be obtained with α,α-disubstituted
benzylamines. This behavior is consistent with Cu-catalyzed
amination and sulfenylation of C−H bonds.14b,c
Auxiliary can be cleaved by base hydrolysis. Thus, heating
amide 6 with NaOH in ethanol for 24 h afforded high yield of
trifluorobenzoic acid (Scheme 2).
While speculations about the reaction mechanism are
premature at this point, Ribas has shown that Cu-catalyzed
nucleophilic Ar fluorination and Ar halide exchange is possible
in a geometrically constrained system.16a The reactions proceed
via Cu(III) intermediates, thus showing that C−F reductive
elimination from Cu(III) is possible under very mild
conditions.7b Given that aminoquinoline amides stabilize high
oxidation states in transition metals,14d it is likely that Cu-
catalyzed aminoquinoline amide fluorination also proceeds via
Cu(III) intermediates.
To conclude, we developed a method for direct, Cu-
catalyzed, auxiliary-assisted fluorination of β-sp2 C−H bonds of
benzoic acid derivatives and γ-sp2 C−H bonds of benzylamine
derivatives. The reaction uses catalytic CuI or AgF as the
nucleophilic fluoride source, and DMF, pyridine, or DMPU
solvent at moderately elevated temperatures. The method
allows for selective mono- or difluorination of benzamide
substrates, shows excellent functional group tolerance, and
provides a straightforward way for the preparation of ortho-
fluorinated benzoic acids. Future work involves mechanistic
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Welch Foundation (Grant E-1571), National
Institute of General Medical Science (Grant R01GM077635),
Camille and Henry Dreyfus Foundation, and Norman Hacker-
man Advanced Research Program for supporting this research.
REFERENCES
■
(1) (a) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48,
2929. (b) Coenen, H. H.; Ermert, J. Curr. Radiopharm. 2010, 3, 163.
(c) Zhang, X.-J.; Lai, T.-B.; Kong, R. Y.-C. Top. Curr. Chem. 2012, 308,
365. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (e) Jeschke, P. ChemBioChem 2004, 5, 570.
(2) (a) Balz, G.; Schiemann, G. Chem. Ber. 1927, 60, 1186.
(3) (a) Dawood, K. M. Tetrahedron 2004, 60, 1435. (b) Adams, D. J.;
Clark, J. H. Chem. Soc. Rev. 1999, 28, 225. (c) Rozen, S. Adv. Synth.
Catal. 2010, 352, 2691. (d) Yamada, S.; Knochel, P. Synthesis 2010,
2490. (e) Umemoto, T.; Tomizawa, G. J. Org. Chem. 1995, 60, 6563.
(4) (a) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
(b) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase, M. K.;
Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 18106.
(5) (a) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed.
2008, 47, 5993. (b) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc.
2011, 133, 11482. (c) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc.
2010, 132, 12150. (d) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008,
130, 10060. Review: (e) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature
2011, 473, 470.
(6) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795.
(7) (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648.
(b) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552.
(8) (a) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160. (b) Vigalok, A.
Organometallics 2011, 30, 4802. (c) Dubinsky-Davidchik, I. S.; Potash,
S.; Goldberg, I.; Vigalok, A.; Vedernikov, A. N. J. Am. Chem. Soc. 2012,
134, 14027. (d) Zhao, S.-B.; Wang, R.-Y.; Nguyen, H.; Becker, J. J.;
́
Gagne, M. R. Chem. Commun. 2012, 48, 443. (e) Mankad, N. P.;
Toste, F. D. Chem. Sci. 2012, 3, 72.
(9) (a) Bloom, S.; Pitts, C. R.; Miller, D. C.; Haselton, N.; Holl, M.
G.; Urheim, E.; Lectka, T. Angew. Chem., Int. Ed. 2012, 51, 10580.
(b) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.,
III; Groves, J. T. Science 2012, 337, 1322. (c) Yin, F.; Wang, Z.; Li, Z.;
Li, C. J. Am. Chem. Soc. 2012, 134, 10401. (d) Amaoka, Y.; Nagatomo,
M.; Inoue, M. Org. Lett. 2013, 15, 2160. (e) Katcher, M. H.; Doyle, A.
G. J. Am. Chem. Soc. 2010, 132, 17402. Review: (f) Sibi, M. P.;
Landais, Y. Angew. Chem., Int. Ed. 2013, 52, 3570.
(10) (a) Hull, K. L; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 7134. (b) Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc.
2009, 131, 3796.
(11) (a) Wang, X.; Mei, T.-S.; Yu, Y.-Q. J. Am. Chem. Soc. 2009, 131,
7520. (b) Chan, K. S. L.; Wasa, M.; Wang, X.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2011, 50, 9081. Review: (c) Engle, K. M.; Mei, T.-S.; Wang,
X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478.
9344
dx.doi.org/10.1021/ja4047125 | J. Am. Chem. Soc. 2013, 135, 9342−9345