Concise Article
MedChemComm
UNC2533. These compounds are structurally more compact
than the chemical probe UNC1215 and maintain nanomolar
L3MBTL3 potency. In addition, these compounds have
profound selectivity over the Royal family proteins L3MBTL1
and MBTD1 as well as a broad range of other methyllysine
readers exemplied in our AlphaScreenꢀ assay. Through
structure activity relationship studies, we deduced that a
dibasic amine is necessary for compound potency as both
6 D. M. Stewart, J. Li and J. Wong, Mol. Cell. Biol., 2005, 25,
2525–2538.
7 Y. B. Schwartz and V. Pirrotta, Nat. Rev. Genet., 2007, 8, 9–22.
8 Y. Zhang and D. Reinberg, Genes Dev., 2001, 15, 2343–2360.
9 G. Schotta, R. Sengupta, S. Kubicek, S. Malin, M. Kauer,
E. Callen, A. Celeste, M. Pagani, S. Opravil, I. A. De La Rosa-
Velazquez, A. Espejo, M. T. Bedford, A. Nussenzweig,
M.BusslingerandT. Jenuwein,Genes Dev., 2008, 22, 2048–2061.
functionalities take part in key cation–pi binding interactions 10 N. Zacharias and D. A. Dougherty, Trends Pharmacol. Sci.,
with the L3MBTL3 dimer. Modications to the (pyrrolidinyl)- 2002, 23, 281–287.
piperidine showed that ligand binding is primarily mediated by 11 M. Yun, J. Wu, J. L. Workman and B. Li, Cell Res., 2011, 21,
the interaction of UNC2533 with the domain 2 reader pocket 564–578.
and that there is little room for variation in this portion of the 12 S. Maurer-stroh, N. J. Dickens, L. Hughes-davies,
molecule. In addition, we found that decreasing the ring size of
the ethyl-pyrrolidine moiety to an ethyl-azetidine was tolerated,
T. Kouzarides, F. Eisenhaber and C. P. Ponting, Trends
Biochem. Sci., 2003, 28, 69–74.
giving the equipotent compound 14. Most importantly, X-ray 13 J. Kim, J. Daniel, A. Espejo, A. Lake, M. Krishna, L. Xia,
crystallography of the UNC2533-L3MBTL3 complex showed that Y. Zhang and M. T. Bedford, EMBO Rep., 2006, 7, 397–403.
UNC2533 binds the L3MBTL3 dimer as a 2 : 2 complex and is 14 F. R. Zahir, S. Langlois, K. Gall, P. Eydoux, M. A. Marra and
accommodated by rotation of the L3MBTL3 dimer interface.
J. M. Friedman, Am. J. Med. Genet., Part A, 2009, 149, 1257–
This is the rst evidence that demonstrates the dynamic nature
1262.
of the L3MBTL3 dimer and its ability to change its conforma- 15 N. Gurvich, F. Perna, A. Farina, F. Voza, S. Menendez,
tion upon ligand binding. This has implications for the design
of further L3MBTL3 inhibitors and possibly histone binding.
J. Hurwitz and S. D. Nimer, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 22552–22557.
16 J. Qin, D. Van Buren, H. S. Huang, L. Zhong, R. Mostoslavsky,
S. Akbarian and H. Hock, J. Biol. Chem., 2010, 285, 27767–
27775.
Acknowledgements
We thank the SGC for providing the constructs and/or plasmids 17 S. V. Frye, Nat. Chem. Biol., 2010, 6, 159–161.
for L3MBTL1, L3MBTL3, MBTD1, UHRF1 and CBX7 and Greg 18 J. M. Herold, T. J. Wigle, J. L. Norris, R. Lam, V. K. Korboukh,
Wang for providing PHF23 and JARID1 proteins. The research
described here was supported by the National Institute of General
Medical Sciences, US National Institutes of Health (NIH, grant
R01GM100919), the Carolina Partnership and the University
C. Gao, L. A. Ingerman, D. B. Kireev, G. Senisterra,
M. Vedadi, A. Tripathy, P. J. Brown, C. H. Arrowsmith,
J. Jin, W. P. Janzen and S. V. Frye, J. Med. Chem., 2011, 54,
2504–2511.
Cancer Research Fund, University of North Carolina at Chapel 19 J. M. Herold, L. I. James, V. K. Korboukh, C. Gao, K. E. Coil,
Hill, the Ontario Research Fund (grant ORF-GL2), and the
Structural Genomics Consortium which is a registered charity
(number 1097737) that receives funds from AbbVie, Boehringer
D. J. Bua, J. L. Norris, D. Kireev, P. J. Brown, J. Jin,
W. P. Janzen, O. Gozani and S. Frye, MedChemComm, 2012,
3, 45–51.
Ingelheim, Canada Foundation for Innovation, the Canadian 20 L. I. James, D. Barsyte-Lovejoy, N. Zhong, L. Krichevsky,
Institutes for Health Research (CIHR), Genome Canada through
the Ontario Genomics Institute [OGI-055], GlaxoSmithKline,
Janssen, Lilly Canada, the Novartis Research Foundation, the
Ontario Ministry of Economic Development and Innovation,
Pzer, Takeda, and the Wellcome Trust [092809/Z/10/Z]. C.H.A.
holds a Canada Research Chair in Structural Genomics.
V. K. Korboukh, J. M. Herold, C. J. MacNevin, J. L. Norris,
C. A. Sagum, W. Tempel, E. Marcon, H. Guo, C. Gao,
X. P. Huang, S. Duan, A. Emili, J. F. Greenblatt,
D. B. Kireev, J. Jin, W. P. Janzen, P. J. Brown,
M. T. Bedford, C. H. Arrowsmith and S. V. Frye, Nat. Chem.
Biol., 2013, 9, 184–191.
21 B. M. Dickson, H. Huang and C. B. Post, J. Phys. Chem. B,
2012, 116, 11046–11055.
22 T. J. Wigle, J. M. Herold, G. A. Senisterra, M. Vedadi,
D. B. Kireev, C. H. Arrowsmith, S. V. Frye and
W. P. Janzen, J. Biomol. Screening, 2010, 15, 62–71.
Notes and references
1 B. D. Strahl and C. D. Allis, Nature, 2000, 403, 41–45.
2 T. Jenuwein and C. D. Allis, Science, 2001, 293, 1074–1080.
3 B. E. Bernstein, E. L. Humphrey, R. L. Erlich, R. Schneider, 23 Molecular Operating Environment (MOE), 2012.10,
P. Bouman, J. S. Liu, T. Kouzarides and S. L. Schreiber,
Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 8695–8700.
Chemical Computing Group Inc., 1010 Sherbooke St. West,
Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.
4 H. Santos-Rosa, R. Schneider, A. J. Bannister, J. Sherriff, 24 W. Kabsch, Acta Crystallogr., Sect. A: Found. Crystallogr.,
B. E. Bernstein, N. C. Emre, S. L. Schreiber, J. Mellor and
T. Kouzarides, Nature, 2002, 419, 407–411.
5 G. Schotta, A. Ebert, V. Krauss, A. Fischer, J. Hoffmann,
1976, 32, 922–923.
25 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics,
1996, 14, 33–38.
S. Rea, T. Jenuwein, R. Dorn and G. Reuter, EMBO J., 2002, 26 D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura and
21, 1121–1131.
S. L. Buchwald, Chem. Sci., 2011, 2, 57–68.
This journal is ª The Royal Society of Chemistry 2013
Med. Chem. Commun., 2013, 4, 1501–1507 | 1507