Running title
Chin. J. Chem.
Cha, J. K. Facile Synthesis of the Tricyclic Core of Sarain A. 3-
P.-Q. Asymmetric Total Synthesis and Absolute Configuration
Determination of (−)-Verrupyrroloindoline. Org. Lett. 2018, 20,
4200−4203. (c) Liu, Z.-J.; Huang, P.-Q. Biomimetic Enantioselective
Total Synthesis of (–)-Robustanoids A, B and Analogs, J. Org. Chem.
2019, 84, 5627−5634. For an account, see: (d) Geng, H.; Huang, P.-Q.
Rapid Generation of Molecular Complexity by Chemical Synthesis:
Highly Efficient Total Synthesis of Hexacyclic Alkaloid (−)-
Chaetominine and Its Biosynthetic Implications. Chem. Rec. 2019, 19,
523−533.
(a) Huang, P.-Q. Towards Step Economical Synthesis of Alkaloids. The
24th International Society of Heterocyclic Chemistry Congress (ISHC-
24): Abstract book, pp. 58, 2013, Shanghai. (b) Kawagishi, F.;
Yokoshima, S.; Fukuyama, T. Synthetic Studies on Haliclonin A. ISHC-
24: Abstract book, pp. 95, 2013, Shanghai. (c) Luo, S.-P.; Guo, L.-D.;
Gao, L.-H.; Li, S.; Huang, P.-Q. Toward the Total Synthesis of Haliclonin
A: Construction of a Tricyclic Substructure. Chem. Eur. J. 2013, 19,
87−91. (d) Guo, L.-D.; Huang, X.-Z.; Luo, S.-P.; Cao, W.-S.; Ruan, Y.-P.;
Ye, J.-L.; Huang, P.-Q. Organocatalytic, Asymmetric Total Synthesis of
(–)-Haliclonin A. Angew. Chem. Int. Ed. 2016, 55, 4064−4068. (e) Guo,
L.-D. Ph D dissertation (Huang), Xiamen University, China, 2016. (f)
Orihara, K.; Kawagishi, F.; Yokoshima, S.; Fukuyama, T. Synthetic
Studies of Haliclonin A: Construction of the 3-Azabicyclo[3.3.1]nonane
Skeleton with a Bridge that Forms the 17-Membered Ring. Synlett
2018, 29, 769−772. (g) keyama, S.; Ishihara, J. Formal Synthesis of (−)-
Oxidopyridinium Betaine Cycloaddition Approach. Org. Lett. 1999, 1,
2017−2019. (d) Price Mortimer, A. J.; Pang, P. S.; Aliev, A. E.; Tocher,
D. A.; Porter, M. J. Concise Synthesis of Bicyclic Aminals and Their
Evaluation as Precursors to the Sarain core. Org. Biomol. Chem. 2008,
6, 2941−2951. (e) Yang, R.-F.; Huang, P.-Q. Studies towards an
Enantioselective Total Synthesis of Sarain A: A Concise Asymmetric
Construction of the Diazatricyclic Core. Chem. Eur. J. 2010, 16,
10319−10322. (f) Franklin, A. I.; Bensa, D.; Adams, H.; Coldham, I.
Transannular Dipolar Cycloaddition as an Approach Towards the
Synthesis of the Core Ring System of the Sarain Alkaloids. Org. Biomol.
Chem. 2011, 9, 1901−1907. (g) Wang, Y.; Leng, L. Y.; Liu, Y.; Dai, G. Y.;
Xue, F. L.; Chen, Z. H.; Meng, J.; Wen, G. H.; Xiao, Y. X.; Liu, X. Y.; Qin,
Y. Asymmetric Synthesis of an Advanced Tetracyclic Framework of (+)-
Sarain A. Org. Lett. 2018, 20, 6701–6704.
(a) Garg, N. K.; Hiebert, S.; Overman, L. E. Total Synthesis of (−)-Sarain
A. Angew. Chem. Int. Ed. 2006, 45, 2912−2915. (b) Becker, M.; Chua,
H.; P.; Downham, R.; Douglas, C. J.; Garg, N. K.; Hiebert, S.; Jaroch, S.;
Matsuoka, R. T.; Middleton, J. A.; Ng, F. W.; Overman, L. E. Total
Synthesis of (−)-Sarain A. J. Am. Chem. Soc. 2007, 129, 11987−12002,
Correction: J. Am. Chem. Soc. 2018, 140, 5319−5319. (c) Higo, T.;
Ukegawa, T.; Yokoshima, S.; Fukuyama, T. Formal Synthesis of Sarain
A: Intramolecular Cycloaddition of an Eight-Membered Cyclic Nitrone
to Construct the 2-Azabicyclo[3.3.1]nonane Framework. Angew.
Chem. Int. Ed. 2015, 54, 7367−7370.
Haliclonin
A:
Stereoselective
Construction
of
an
Jang, K. J.; Kang, G. W.; Jeon, J.; Lim, C.; Lee, H. S.; Sim, C. J.; Oh, K. B.;
Shin, J. Haliclonin A, a New Macrocyclic Diamide from the Sponge
Haliclona sp. Org. Lett. 2009, 11, 1713−1716.
Azabicyclo[3.3.1]nonane Ring System by a Tandem Radical Reaction.
Org. Lett. 2020, 22, 5046–5050.
Gao, Y.-J.; Luo, S.-P.; Ye, J.-L.; Huang, P.-Q. An Attempted Approach to
the Tricyclic Core of Haliclonin A: Structural Elucidation of the Final
Product by 2D NMR. Chin. Chem. Lett. 2017, 28, 1176−1181.
For selected reviews, see: (a) Hillenbrand, J.; Leutzsch, M.; Fürstner, A.
Molybdenum Alkylidyne Complexes with Tripodal Silanolate Ligands:
The Next Generation of Alkyne Metathesis Catalysts. Angew. Chem.
Int. Ed. 2019, 58, 15690–15696. (b) Ehrhorn, H.; Tamm, M. Well-
Defined Alkyne Metathesis Catalysts: Developments and Recent
Applications. Chem. Eur. J. 2019, 25, 3190–3208. (c) Vanderwal, C. D.;
Atwood, B. R. Recent Advances in Alkene Metathesis for Natural
Product Synthesis-Striking Achievements Resulting from Increased
Sophistication in Catalyst Design and Synthesis Strategy. Aldrichimica
Acta 2017, 50, 17–27. (d) Fürstner, A. Alkyne Metathesis on the Rise.
Angew. Chem. Int. Ed. 2013, 52, 2794–2819.
(a) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.; Huang, P.-Q. Iridium-Catalyzed
Reductive Alkylations of Secondary Amides. Angew. Chem. Int. Ed.
2018, 57, 11354−11358. (b) Wu, D.-P.; He, Q.; Chen, D.-H.; Ye, J.-L;
Huang, P.-Q. A Stepwise Annulation for the Transformation of Cyclic
Ketones to Fused 6 and 7-Membered Cyclic Enimines and Enones. Chin.
J. Chem. 2019, 37, 315−322. (c) Geng, H.; Huang, P.-Q. Ketone
Synthesis by Direct, Orthogonal Chemoselective Hydroacylation of
Alkenes with Amides: Use of Alkenes as Surrogates of Alkyl Carbanions.
Chin. J. Chem. 2019, 37, 811−816. (d) Wang, S.-R.; Huang, P.-Q. Cross-
coupling of Secondary Amides with Tertiary Amides: The Use of
Tertiary Amides as Surrogates of Alkyl Carbanions for Ketone
Synthesis. Chin. J. Chem. 2019, 37, 887−891. (e) Liu, Y.-P.; Zhu, C.-J.;
Yu, C.-C.; Wang, A.-E; Huang, P.-Q. Tf2O-Mediated Intermolecular
Coupling of Secondary Amides with Enamines/ Ketones: A Versatile,
Direct Access to β-Enaminones. Eur. J. Org. Chem. 2019, 7169−7174.
(f) Xu, Z.; Wang, X.-G.; Wei, Y.-H.; Ji, K.-L.; Zheng, J.-F.; Ye, J.-L.; Huang,
(a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and Activity
of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts
Coordinated
with
1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene
P.-Q.
Organocatalytic,
Enantioselective
Reductive
Bis-
Ligands. Org. Lett. 1999, 1, 953−956. (b) Chatterjee, A. K.; Choi, T. L.;
Sanders, D. P.; Grubbs, R. H. A General Model for Selectivity in Olefin
Cross Metathesis. J. Am. Chem. Soc. 2003, 125, 11360−11370. For
reviews on the use of metathesis in total synthesis, see: (c) Nicolaou,
K. C.; Bulger, P. G.; Sarlah, D. Metathesis Reactions in Total Synthesis.
Angew. Chem. Int. Ed. 2005, 44, 4490–4527. (d) Fürstner, A.
Metathesis in total synthesis. Chem. Comm. 2011, 47, 6505–6511.
Macrocycle formation by RCM with Grubbs I under high dilution
conditions, see: (e) Fürstner, A.; Langemann, K. Conformationally
Unbiased Macrocyclization Reactions by Ring Closing Metathesis. J.
Org. Chem. 1996, 61, 3942−3943. (f) Fürstner, A.; Langemann, K. Total
Syntheses of (+)-Ricinelaidic Acid Lactone and of (−)-Gloeosporone
Functionalization of Secondary Amides: One-Pot Construction of
Chiral 2,2-Disubstituted 3-Iminoindoline. Org. Lett. 2019, 21,
7587−7591. (g) Liu, Y.-C.; Zheng, X.; Huang, P.-Q. Photoredox Catalysis
for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines.
Acta Chim. Sinica 2019, 77, 850-855. For a mini-review, see: Huang,
P.-Q. Direct Transformations of Amides: Tactics and Recent Progress.
Acta Chim. Sinica 2018, 76, 357-365.
For selected examples, see: (a) Huang, P.-Q.; Huang, S.-Y.; Gao, L.-H.;
Mao, Z.-Y.; Chang, Z.; Wang, A.-E. Enantioselective Total Synthesis of
(+)-Methoxystemofoline and (+)-Isomethoxystemofoline. Chem.
Commun. 2015, 51, 4576−4578. (b) Yang, Z.-P.; He, Q.; Ye, J.-L.; Huang,
Chin. J. Chem. 2020, 38, XXX-XXX
© 2020 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.