laboratory became interested in the asymmetric construc-
tion of elaborate spirocyclic oxindole skeletons,7 and we
disclosed a phosphine-catalyzed [3 þ 2] cycloaddition
reaction to construct spirocyclopenteneoxindoles through
a modified allylic phosphonium ylide strategy.6c
We hypothesized that the spirocyclobenzofuranone
scaffold could be constructed from 3-substituted methyle-
nebenzofuranones and a phosphonium ylide, derived from
MoritaꢀBaylisꢀHillman carbonates (MBHC)8,6bꢀe un-
der chiral phosphine catalysis (Figure 1). Herein we report
a highly stereoselective phosphine-catalyzed [3 þ 2] cy-
cloaddition reaction that enabled us to construct a wide
range of spirocyclopentenebenzofuranone core structures
in a single step from easily accessible starting materials in
high yield and selectivity.
We commenced our investigation by probing several
C2-symmetric phosphine catalysts (IꢀVII) and phosphine-
containing ligands (Figure 2) in a model reaction of
3-substituted benzofuranone 1a and MBHC 2a in dichlo-
romethane (DCM) at room temperature (Table 1). Phos-
pholane derivatives IꢀVI provided the desired cyclo-
addition product 3a in excellent yield and moderate to
good selectivity (Table 1, entries 1ꢀ4). Bis-2,5-dimethyl-
substituted 1,2-ethandiylphospholane I9 provided 3a in
68% enantiomeric excess (ee) after 4 h. In reactions of
the sterically more hindered 2,5-bis-ethyl- and 2,5-bis-
isopropyl-containing derivatives (II and III),9 the enan-
tioselectivities were 77% (for II, Table 1, entry 2) and 86%
(for III, Table 1, entry 3), respectively. Bis-2,5-diphenyl-
substituted 1,2-ethandiylphospholane IV10 provided the
cycloaddition product 3a in a diastereomeric ratio (dr) of
8:1 and in 94% ee after 4 h at room temperature.
Figure 1. Natural products with spirocyclopentanone core
structure and strategy for the assembly of this scaffold.
chiral building blocks.4 A number of transformations have
been disclosed involving chiral phosphine catalysts,5 and a
few examples of asymmetric construction of complex
structures, such as spirocyclic scaffolds equipped with
several chiral centers, have been reported.6 Recently, our
(5) For selected pioneering studies on chiral phosphine catalysis, see:
(a) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430. (b)
Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem.
Soc. 1997, 119, 3836. (c) Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.;
Zhang, X. J. Org. Chem. 1998, 63, 5631. (d) Vedejs, E.; Daugulis, O.
J. Am. Chem. Soc. 1999, 121, 5813. (e) Shaw, S. A.; Aleman, P.; Vedejs,
E. J. Am. Chem. Soc. 2003, 125, 13368. (f) Shi, M.; Chen, L.-H.; Li, C.-Q.
J. Am. Chem. Soc. 2005, 127, 3790. (g) Wurz, R. P.; Fu, G. C. J. Am.
Chem. Soc. 2005, 127, 12234. For reviews on enantioselective phosphine
catalysis, see: (h) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (i) Fan,
Y. C.; Kwon, O. Sci. Synth., Asymm. Organocatal. 2012, 1, 723.
(6) (a) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988.
(b) Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A.
Chem.;Eur. J. 2010, 16, 12541. (c) Tan, B.; Candeias, N. R.; Barbas,
C. F., III. J. Am. Chem. Soc. 2011, 133, 4672. (d) Zhong, F.; Han, X.;
Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837. (e) Deng, H.-P.;
Wei, Y.; Shi, M. Org. Lett. 2011, 13, 3348. (f) Duvvuru, D.; Pinto, N.;
Gomez, C.; Betzer, J.-F.; Retailleau, P.; Voituriez, A.; Marinetti, A. Adv.
Synth. Catal. 2012, 354, 408.
(7) (a) Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011,
3, 473. (b) Tan, B.; Hernandez-Torres, G.; Barbas, C. F., III. J. Am.
Chem. Soc. 2011, 133, 12354. (c) Tan, B.; Zeng, X.; Leong, W. W. Y.; Shi,
Z.; Barbas, C. F., III; Zhong, G. Chem.;Eur. J. 2012, 18, 63. (d)
Albertshofer, K.; Tan, B.; Barbas, C. F., III. Org. Lett. 2012, 14, 1834. (e)
Albertshofer, K.; Anderson, K.; Barbas, C. F., III. Org. Lett. 2012, 14,
5968.
(8) MoritaꢀBaylisꢀHillman carbonates have been previously em-
ployed to generate allylic phosphonium ylides as reaction partners in
asymmetric catalytic transformations: (a) Wang, Q.-G.; Zhu, S.-F.; Ye,
L.-W.; Zhou, C.-Y.; Sun, X.-L.; Tang, Y.; Zhou, Q.-L. Adv. Synth.
Catal. 2010, 352, 1914. (b) Hong, L.; Sun, W.; Liu, C.; Zhao, D.; Wang,
R. Chem. Commun. (Cambridge, U.K.) 2010, 46, 2856. (c) Wang, Q.-G.;
Zhu, S.-F.; Ye, L.-W.; Zhou, C.-Y.; Sun, X.-L.; Tang, Y.; Zhou, Q.-L.
Adv. Synth. Catal. 2010, 352, 1914. (d) Yang, Y.-L.; Pei, C.-K.; Shi, M.
Org. Biomol. Chem. 2011, 9, 3349. (e) Zhong, F.; Han, X.; Wang, Y.; Lu,
Y. Angew. Chem., Int. Ed. 2011, 50, 7837. (f) Deng, H.-P.; Wang, D.;
Wei, Y.; Shi, M. Beilstein J. Org. Chem 2012, 8, 1098. (g) Deng, H.-P.;
Wei, Y.; Shi, M. Adv. Synth. Catal. 2012, 354, 783. (h) Hu, F.; Wei, Y.;
Shi, M. Tetrahedron 2012, 68, 7911. (i) Huang, X.; Peng, J.; Dong, L.;
Chen, Y.-C. Chem. Commun. (Cambridge, U.K.) 2012, 48, 2439. (j)
Wang, D.; Yang, Y.-L.; Jiang, J.-J.; Shi, M. Org. Biomol. Chem. 2012,
10, 7158. (k) Wang, Y.; Liu, L.; Zhang, T.; Zhong, N.-J.; Wang, D.;
Chen, Y.-J. J. Org. Chem. 2012, 77, 4143. (l) Zhang, X.-N.; Deng, H.-P.;
Huang, L.; Wei, Y.; Shi, M. Chem. Commun. (Cambridge, U.K.) 2012,
48, 8664. (m) Zhong, F.; Chen, G.-Y.; Han, X.; Yao, W.; Lu, Y. Org.
Lett. 2012, 14, 3764.
Figure 2. Chiral phosphine catalysts probed in the [3 þ 2]
cycloaddition reaction between 1a and 2a.
(9) (a) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M. J.;
Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993,
115, 10125.
B
Org. Lett., Vol. XX, No. XX, XXXX