Journal of the American Chemical Society
Communication
with MnIV−N3: approach to either the manganese-bound (N1)
or terminal (N3) azido-nitrogen on either the triplet or quintet
energy surfaces. All of these trajectories had low barriers, with the
lowest energy transition state obtained for azido-transfer through
N3 on the quintet surface, which had an energy barrier of only 7.0
kcal/mol. The azido-transfer transition state at the N1 nitrogen
was found just above at 8.3 kcal/mol on the triplet energy surface.
Closer inspection of the structures of these transition states
revealed that the benzylic carbon of the tolyl radical is in close
proximity to the aryl group of the salen ligand in both structures
(3.27 and 3.10 Å), consistent with the observed enantioselec-
tivity. Based on these mechanistic considerations, we propose a
reaction mechanism similar to that of Mn−F C-H fluorination,12a
wherein PhIO first oxidizes the resting Mn(III) catalyst to the
hydrogen-abstracting oxoMn(V) intermediate (Figure 4). The
ACKNOWLEDGMENTS
■
This research was supported by the US National Science
Foundation award CHE-1148597. X.H. thanks the Howard
Hughes Medical Institute for fellowship support. The authors
thank Prof. A. G. Doyle for access to chiral HPLC.
REFERENCES
■
(1) (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem.,
Int. Ed. 2005, 44, 5188. (b) Organic Azides: Syntheses and Applications;
John Wiley & Sons, Ltd: Chichester, U.K., 2010.
(2) (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013,
113, 4905. (b) Grammel, M.; Hang, H. C. Nat. Chem. Biol. 2014, 10, 239.
(3) (a) Binder, W. H.; Kluger, C. Curr. Org. Chem. 2006, 10, 1791.
(b) Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Adv. Funct. Mater.
2014, 24, 2572.
(4) (a) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. (b) Xie,
F.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 11862. (c) Zheng, Q.-Z.;
Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262. (d) Fan, Y.;
Wan, W.; Ma, G.; Gao, W.; Jiang, H.; Zhu, S.; Hao, J. Chem. Commun.
2014, 50, 5733. (e) Yao, B.; Liu, Y.; Zhao, L.; Wang, D.-X.; Wang, M.-X.
J. Org. Chem. 2014, 79, 11139.
(5) (a) Lubriks, D.; Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134,
15436. (b) Telvekar, V. N.; Sasane, K. A. Synth. Commun. 2012, 42,
1085.
(6) (a) Lescot, C.; Darses, B.; Collet, F.; Retailleau, P.; Dauban, P. J.
Org. Chem. 2012, 77, 7232. (b) Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.;
Williams, H.; Rodriguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem.
2013, 5, 510. (c) Yu, X. Q.; Huang, J. S.; Zhou, X. G.; Che, C. M. Org.
Lett. 2000, 2, 2233. (d) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J.
Am. Chem. Soc. 2004, 126, 15378. (e) Davies, H. M. L.; Long, M. S.
Angew. Chem., Int. Ed. 2005, 44, 3518. (f) Wasa, M.; Yu, J.-Q. J. Am.
Chem. Soc. 2008, 130, 14058. (g) Ochiai, M.; Miyamoto, K.; Kaneaki, T.;
Hayashi, S.; Nakanishi, W. Science 2011, 332, 448. (h) Che, C.-M.; Lo, V.
K.-Y.; Zhou, C.-Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950.
(i) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911.
(j) Paradine, S. M.; White, M. C. J. Am. Chem. Soc. 2012, 134, 2036.
(k) Michaudel, Q.; Thevenet, D.; Baran, P. S. J. Am. Chem. Soc. 2012,
134, 2547. (l) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem., Int. Ed.
2012, 51, 7384. (m) Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092.
(n) Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591. (o) Louillat,
M.-L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
(7) (a) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.;
Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118,
5192. (b) Viuf, C.; Bols, M. Angew. Chem., Int. Ed. 2001, 40, 623.
(8) Chen, H.; Yang, W.; Wu, W.; Jiang, H. Org. Biomol. Chem. 2014, 12,
3340.
(9) Deng, Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem.
Soc. 2013, 135, 5356.
(10) Matthews, M. L.; Chang, W.-c.; Layne, A. P.; Miles, L. A.; Krebs,
C.; Bollinger, J. M., Jr. Nat. Chem. Biol. 2014, 10, 209.
Figure 4. Proposed Mn-azide reaction mechanism.
substrate radical formed after hydrogen abstraction is then
captured by MnIV−N3 intermediate to form C−N3 bond and
regenerate the catalyst in accordance with the energy landscape
in Figure 3d.
In conclusion, we have developed a facile and convenient
manganese-catalyzed aliphatic C−H azidation reaction. The
reported reaction uses easily handled aqueous NaN3 solutions as
the azide source and is operationally simple. The potential of this
method for applications in organic synthesis, chemical biology
and drug discovery has been demonstrated by the successful late
stage azidation of several bioactive molecules. With an initial high
enatioselectivity with chiral manganese salen catalyst, we are now
working to further improve the enantioselectivity of this reaction
and expanding its substrate scope. Furthermore, efforts are being
undertaken to extend the concept illustrated in this paper to the
installation of other pseudohalogen functional groups to
molecules via manganese-catalyzed C−H activation.
(11) Sharma, A.; Hartwig, J. F. Nature 2015, 517, 600.
(12) (a) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W.
A., III; Groves, J. T. Science 2012, 337, 1322. (b) Huang, X.; Liu, W.;
Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. J. Am. Chem. Soc.
2014, 136, 6842.
(13) (a) Groves, J. T.; Kruper, W. J.; Haushalter, R. C. J. Am. Chem. Soc.
1980, 102, 6375. (b) Kruper, W. J., Jr. Ph.D. Dissertation, University of
Michigan, 1982. (c) Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132,
12847.
(14) Hill, C. L.; Smegal, J. A.; Henly, T. J. J. Org. Chem. 1983, 48, 3277.
(15) Conrow, R. E.; Dean, W. D. Org. Process Res. Dev. 2008, 12, 1285.
(16) (a) Kurahashi, T.; Fujii, H. Inorg. Chem. 2008, 47, 7556.
(b) Kurahashi, T.; Hada, M.; Fujii, H. J. Am. Chem. Soc. 2009, 131,
12394.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, spectroscopic data for all new
compounds, and details for the DFT calculations. This material is
AUTHOR INFORMATION
■
Corresponding Author
(17) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol. Chem.
2005, 3, 816.
(18) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434.
Notes
The authors declare no competing financial interest.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX