1204
S. Miltsov et al. / Tetrahedron Letters 54 (2013) 1202–1204
Acc. Chem. Res. 2008, 41, 1440–1449; (d) Valente, C.; Calimsiz, S.; Hoi, K. H.;
Mallik, D.; Sayah, M.; Organ, G. Ang. Chem., Int. Ed. 2012, 51, 3314–3332; (e)
Organ, M. G.; Chass, G. A.; Fang, D.-C.; Hopkinson, A. C.; Valente, C. Synthesis
2008, 2776–2797; (f) Kantchev, E.; Assen, B.; O’Brien, C. J.; Organ, M. G. Ang.
Chem., Int. Ed. 2007, 46, 2768–2813.
10 times resulted in a domination of side products. On the other
hand, the catalyst stock solution in methanol (0.001 mmol/mL)
did not lose its activity within at least three months. Surprisingly,
the precursor complex PdCl2(CyN„C)2 was found to act also as a
catalyst of arylation. However, its activity was lower, since partial
reduction by alcohols to metallic palladium took place in alcoholic
solutions even at room temperature in few hours. In order to
achieve the same results for the synthesis of dye 2a, meaning the
complete conversion of the initial dye in 1 h and achieving a com-
parable yield, an increase of 100 times the molar amount of cata-
lyst was required. In this case, the catalytic species was probably
in situ generated by the addition of an alkoxide or an hydroxide an-
ion to the palladium–isonitrile complex, forming the aminoalkoxy-
or aminohydroxycarbene. The use of milder bases such as triethyl-
amine or sodium acetate was also tried; however, the attempts ap-
peared ineffective. It should be pointed out that in the case of dye
1c, two additional equivalents of K2CO3 were required for the neu-
tralization of carboxy groups. Otherwise, the arylation did not pro-
ceed. Results are summarized in Table 1, where the listed yields
correspond to purified products.
2. Boyarskiy, V. P.; Luzyanin, K. V.; Kukushkin, V. Yu. Coord. Chem. Rev. 2012, 256,
2029–2056.
3. Luzyanin, K. V.; Tskhovrebov, A. G.; Carias, M. C.; da Silva, M. F. C. G.; Pombeiro,
A. J. L.; Kukushkin, V. Yu. Organometallics 2009, 28, 6559–6566.
4. Chay, R. S.; Luzyanin, K. V.; Kukushkin, V. Yu.; da Silva, M. F. C. G.; Pombeiro, A.
J. L. Organometallics 2012, 31, 2379–2387.
5. Luzyanin, K. V.; Pombeiro, A. J. L.; Haukka, M.; Kukushkin, V. Yu.
Organometallics 2008, 27, 5379–5389.
´
´
6. Martınez-Martınez, A.-J.; Chicote, M.-T.; Bautista, D.; Vicente, J. Organometallics
2012, 31, 3711–3719.
7. (a) Miltsov, S.; Encinas, C.; Alonso, J. Tetrahedron Lett. 1999, 40, 4067–4068; (b)
Puyol, M.; Encinas, C.; Rivera, L.; Miltsov, S.; Alonso, J. J. Sens. Actuators, B 2007,
122, 53–59; (c) Rivera, L.; Puyol, M.; Miltsov, S.; Alonso, J. Anal. Bioanal. Chem.
2007, 387, 2111–2119; (d) Puyol, M.; Encinas, C.; Rivera, L.; Miltsov, S.; Alonso,
J. Dyes Pigm. 2007, 73, 383–389; (e) Miltsov, S.; Encinas, C.; Alonso, J.
Tetrahedron Lett. 2001, 42, 6129–6131.
8. Encinas, C.; Miltsov, S.; Rivera, L.; Encinas, C.; Alonso, J. Tetrahedron Lett. 2003,
44, 2301–2303.
9. Goikhman, M. Y.; Yevlampieva, N. P.; Kamanina, N. V.; Podeshvo, I. V.; Gofman,
I. V.; Miltsov, S. A. Polym. Sci., Ser. A 2011, 53, 457–468.
10. Salon, J.; Wolinska, E.; Raszkiewicz, A.; Patonay, G.; Strekowski, L. J. Heterocycl.
Chem. 2005, 42, 959–961.
11. Pinchuk, A.; Weichert, J. P.; Longino, M.; Kandela, I.; Clarke, W.; R. U.S. Patent
2012,01,28,596, 2012; Chem. Abstr. 2012, 156, 660169.
12. Port, M.; Rousseaux, O. WO Patent 200,90,53,596, 2009; Chem. Abstr. 2009, 150,
501154.
On the other hand, the attempted arylation of meso-bromosub-
stituted dicarboindocyanine 3 did not lead to the target product 4,
probably, due to steric hindrance in the reactive site. However, the
formation of the debrominated product 5 was observed at low con-
versions (<30%) (Scheme 2). In the absence of arylboronic acid the
reaction proceeded similarly. Moreover, attempts of completing
the process with increased amount of catalyst (5 Â 10À2 equiv) un-
der prolonged heating led to dye decomposition.
13. Lee, H.; Mason, J. C.; Achilefu, S. J. Org. Chem. 2006, 71, 7862–7865.
14. Preparation of Pd-cat: 4-nitrophenylhydrazine (20 mg, 0.125 mmol) was added
to a solution of PdCl2(CyN„C)2 (50 mg, 0.125 mmol) in 5 mL of CHCl3 and kept
under reflux for 8 h. After filtration, the solution was concentrated in vacuo to
1 mL and diluted with 5 mL of ether. The crystals formed in 24 h were filtered
out, washed with ether and dried on air. Yield 71 mg (95%). 1H NMR (Bruker
DPX-300, 300 MHz) (DMSO-d6) d (ppm): 9.90 (br s, 1H), 8.10 (d, 2H, J = 8.7 Hz),
7.75 (br s, 1H), 7.05 (d, 1H, J = 10.2 Hz), 6.90 (d, 2H, J = 8.7 Hz), 4.44 (m, 1H),
With these results, the acyclic Pd–diaminocarbene complex
demonstrates high catalytic activity in Suzuki arylation of meso-
chlorine-substituted tricarboindocyanine dyes.
4.01 (m, 1H), 2.20–1.24 (m, 20H). IR (KBr, m
, cmÀ1): 2934–2856 (C–H); 2230
(C„N); 1330 (NO2). ES-MS+ (Bruker micrOTOF) [MÀCl]+: 512.0989 (calcd
512.1044 for C20H29ClN5O2Pd). ES-MSÀ: [MÀH]À:546.0646 (calcd 546.0655 for
C
20H28Cl2N5O2Pd). Anal. Calcd for C20H29Cl2N5O2Pd: C 43.77, H 5.33, N 12.76.
Acknowledgments
Found C 44.38, H 5.59, N 13.02.
15. (a) Moncada, A. I.; Khan, M. A.; Slaughter, L. M. Tetrahedron Lett. 2005, 46,
1399–1403; (b) Moncada, A. I.; Tanski, J. M.; Slaughter, L. M. J. Organomet.
Chem. 2005, 690, 6247–6251; (c) Moncada, A. I.; Manne, S.; Tanski, J. M.;
Slaughter, L. M. Organometallics 2006, 25, 491–505.
The authors thank Saint-Petersburg State University for a re-
search Grant, the FT Program (contract P676), RFBR (Grants 11-
03-00048-a, 11-03-12044-ofim, and 12-03-00076-a), and RAS Pre-
sidium Subprogram. This work has also been supported by the
Spanish Ministry of Science and Innovation (MICINN) through pro-
jects CTQ2009-12128 and the Consolider Ingenio 2010 project
CSD2006-12, and Catalonia Government through SGR 2009-0323.
We are grateful to E. Savicheva, B.Sc., for the preparation of the
catalyst.
16. Representative procedure for 2a: dye 1a (320 mg, 0.50 mmol), 4-
chlorophenylboronic acid (100 mg, 0.64 mmol), potassium carbonate
(100 mg, 0.72 mmol), and 0.25 mL of the stock solution of Pd-cat21
(0.001 mmol/mL) in 10 mL of 85% aqueous i-propanol were heated at reflux
for 1 h. After cooling and acidification with 1 mL of acetic acid, the volatiles
were evaporated in vacuo and the residue was recrystallized from methanol,
containing 100 mg/mL of NaI. Yield 242 mg (68%). 1H NMR (DMSO-d6) d (ppm)
1.16 (s, 12H), 1.23 (br t, J = 6,6 Hz, 6H), 1.95 (br s, 2H), 2.69 (br s, 4H), 4.15 (br s,
4H), 6.22 (d, J = 14.5 Hz, 2H), 7.06 (d, J = 14.5 Hz, 2H), 7.18 (br s, 2H), 7.29 (d,
J = 8.0 Hz, 2H),), 7.35 (br s, 4H), 7.53 (d, J = 7.3 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H).
ES-MS+ 587.3204 (calcd 587,3193). kmax (MeOH) 764 nm
mol cm).
(e
= 1.91 Â 105 l/
References and notes
1. (a) Wuertz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523–1533; (b) Fortman, G.
C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151–5169; (c) Marion, N.; Nolan, S. P.