Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
1
2
3
(a) A. R. Katrizky, C. W. Rees and E. F. V. Scriven, in
Comprehensive Heterocyclic Chemistry II, Eds.; Elsevier,
1996; (b) J. J. Li, in Heterocyclic Chemistry in Drug Discovery;
Wiley, 2013; (c) E. Vitaku, D. T. Smith and J. T. Njardarson, J.
Med. Chem., 2014, 57, 10257.
(a) G. Zeni and R. C. Larock, Chem. Rev., 2006, 106, 4644; (b)
J. P. Wolfe, Synthesis of Heterocycles via Metal-Catalyzed
Reactions that Generate One or More Carbon-Heteroatom
and M. Miura, Org. Lett. DOI: 10.1021D/aOcIs: .1o0r.1g0le39Vtit/eC.w55bACr0tCi1c0l9e64O308nl8.inDe
(a) P. Gandeepan, P. Rajamalli and C.-H. Cheng, Chem. Eur. J.,
2015, 21, 9198; (b) N. Casanova, N., A. Seoane, J. L.
Mascareñas and M. Gulías, Angew. Chem., Int. Ed., 2015, 54,
2374.
8
9
D. J. Burns and H. W. Lam, Angew. Chem., Int. Ed., 2014, 53,
9931.
Bonds; Springer: Berlin, 2013; (c) Y. Yamamoto, Chem. Soc. 10 (a) F. Rodriguez, I. Rozas, J. E. Ortega, A. M. Erdozain, J. J.
Rev., 2014, 43, 1575.
Meana and L. F. Callado, J. Med. Chem., 2008, 51, 3304; (b)
A. Coqueiro, L. O. Regasini, P. Stapleton, V. da Silva and S.
Gibbons, J. Nat. Prod., 2014, 77, 1972; (c) R. D. Espirito
Santo, M. G. M. Machado, J. L. dos Santos, E. R. P. Gonzalez
and C. M. Chin, Curr. Org. Chem., 2014, 18, 2572; (d) B. Kelly,
M. McMullan, C. Muguruza, J. E. Ortega, J. J. Meana, L. F.
Callado and I. Rozas, J. Med. Chem., 2015, 58, 963.
For recent reviews on directing-group promoted metal-
catalyzed C–H activation, see: (a) K. M. Engle, T.-S. Mei, M.
Wasa and J.-Q. Yu, Acc. Chem. Res., 2011, 45, 788; (b) P. B.
Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012,
112, 5879; (c) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord
and F. Glorius, Angew. Chem., Int. Ed., 2012, 51, 10236; (d) D.
A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc. 11 Arylguanidines were synthesized from commercially
Chem. Res., 2012, 45, 814; (e) G. Rouquet and N. Chatani,
Angew. Chem., Int. Ed., 2013, 52, 11726; (f) G. Shi and Y.
available N-methylanilines and N-methyl-N-arylcyanamides.
See Supporting Information for details.
Zhang, Adv. Synth. Catal., 2014, 356, 1419; (g) N. Kuhl, N. 12 A. Cajaraville, S. López, J. A. Varela and C. Saá, Org. Lett.,
Schröder and F. Glorius, Adv. Synth. Catal., 2014, 356, 1443;
2013, 15, 4576.
(h) S. De Sakar, W. Liu, S. I. Kozhushkov and L. Ackermann, 13 See Supporting Information for details.
Adv. Synth. Catal., 2014, 356, 1461; (i) M. Zhang, Y. Zhang, X. 14 Ortho-substituted arylguanidines remained unchanged.
Jie, H. Zhao, G. Li and W. Su, Org. Chem. Front., 2014, 1, 843; 15 Diaryl and unsymmetrical alkyl arylalkyne partners did not
(j) G. Qiu, Y. Kuang and J. Wu, Adv. Synth. Catal., 2014, 356,
3483; (k) X-X. Guo, D-W. Gu, Z. Wu and W. Zhang, Chem.
participate in the [5+1] cycloaddition, only traces of indoles
are isolated. See Supporting Information for details.
Rev., 2015, 115, 1622; For a recent review on oxidant-free C– 16 Arylguanidine 1a remains unreactive under the acidic Lam’s
H bond functionalizations, see: (l) J. Mo, L. Wang, Y. Liu and
X. Cui, Synthesis, 2015, 47, 439.
conditions, [{Cp*RhCl2}2] (2.5 mol%), Cu(OAc)2 (2.1 equiv.),
AcOH (0.1 equiv.), dioxane, 60 °C. See ref 9.
4
5
(a) T-S. Mei, X. Wang and J-Q. Yu, J. Am. Chem. Soc., 2009, 17 For bioactive spirodihydroquinazolines, see: (a) A. C. Tinker,
131, 10806; (b) W. C. P. Tsang, N. Zheng and S. L. Buchwald,
J. Am. Chem. Soc., 2005, 127, 14560; (c) K. Takamatsu, K.
Hirano, T. Satoh and M. Miura, Org. Lett., 2014, 16, 2892; (d)
W. Zhou, Y. Liu, Y. Yang and G-J. Deng, Chem. Commun.,
2012, 48, 10678; (e) P-C. Huang, K. Parthasarathy and C-H.
Cheng, Chem. Eur. J., 2013, 19, 460.
H. G. Beaton, N. Boughton-Smith, T. R. Cook, S. L. Cooper, L.
Fraser-Rae, K. Hallam, P. Hamley, T. McInally, D. J. Nicholls,
A. D. Pimm and A. V. Wallace, J. Med. Chem., 2003, 46, 913;
(b) D. Rambabu, S. K. Kumar, B. Y. Sreenivas, S. Sandra, A.
Kandale, P. Misra, M. V.B. Rao and M. Pal, Tetrahedron Lett.,
2013, 54, 495.
For indoles: (a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. 18 CCDC 1053853 (5a) and 1053854 (6a) contain the
Burgess and K. Fagnou, J. Am. Chem. Soc., 2008, 130, 16474-
16475. (b) D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J.
Am. Chem. Soc., 2010, 132, 18326; (c) L. Ackermann and A. V.
Lygin, Org. Lett., 2012, 14, 764; (d) X. Zhang, W. Si, M. Bao,
supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic
Data
Centre
via
N. Asao, Y. Yamamoto and T. Jin, Org. Lett., 2014, 16, 4830; 19 (a) L. Li, W. W. Brennessel and W. D. Jones, J. Am. Chem.
(e) G. Zhang, H. Yu, G. Qin and H. Huang, Chem. Commun.,
2014, 50, 4331; For isoquinolines: (f) N. Guimond and K.
Soc., 2008, 130, 12414; (b) L. Li, W. W. Brennessel and W. D.
Jones, Organometallics, 2009, 28, 3492.
Fagnou, J. Am. Chem. Soc., 2009, 131, 12050; (g) K. 20 Styrene 7a was not observed when the reaction was
Morimoto, K. Hirano, T. Satoh and M. Miura, Org. Lett.,
performed using complex 6b as catalyst.
2010, 12, 2068; (h) D-S. Kim, J-W. Park and C-H. Jun, Adv. 21 G. Li, Z. Ding and B. Xu, Org. Lett., 2012, 14, 5338.
Synth. Catal., 2013, 355, 2667; (i) J. Li, M. John and L. 22 The regioselectivity with unsymmetrically substituted
Ackermann, Chem. Eur. J., 2014, 20, 5403; For isoquinolones:
(j) T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132,
10565; (k) G. Song, D. Chen, C-L. Pan, R. H. Crabtree and X. Li,
J. Org. Chem., 2010, 75, 7487; (l) L. Ackermann, A. V. Lygin
and N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379; (m)
H. Zhong, D. Yang, S. Wang and J. Huang, Chem. Commun.,
2012, 48, 3236; For benzazepines: (n) L. Wang, J. Huang, S.
Peng, H. Liu, X. Jiang and J. Wang, Angew. Chem., Int. Ed.,
2013, 52, 1768.
alkynes seems to be mainly derived from the insertion of the
- +
δ δ
polarized triple bond into the complementary Ar ―Rh bond
(see ref. 5b). Thus, in the case of enynes 2f and 2g, the
alkenyl substituent will be located α to the Rh during the
formation of rhodacycle 6. In the case of alkyl arylalkynes, no
[5+1] adduct is observed due to the favored formation of
rhodacycle 6 in which the phenyl is located α to the Rh and,
therefore, lacks the necessary allylic hydrogens to evolve.
23 R. Zeng, S. Wu, C. Fu and S. Ma J. Am. Chem. Soc., 2013, 135,
18284.
6
7
(a) K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto and K.
Hiroya, Org. Lett., 2007, 9, 2931; (b) X. Li, L. He, H. Chen, W. 24 No Rh-H signals could be detected during the monitorization
Wu and H. Jiang, J. Org. Chem., 2013, 78, 3636; (c) W. Yang,
J. Chen, X. Huang, J. Ding, M. Liu and H. Wu, Org. Lett., 2014, 25 π-Allylrhodium intermediates have also been proposed by
16, 5418; (d) L. Xing, Z. Fan, C. Hou, G. Yong and A. Zhang,
Lam in a related process with enynes (ref 9).
Adv. Synth. Catal., 2014, 356, 972.(e) G. Brasche and S. L. 26 (a) With enynes 2f and 2g, rhodacycles 6 would undergo
Buchwald, Angew. Chem., Int. Ed., 2008, 47, 1932.
(a) K. Morimoto, K. Hirano, T. Satoh and M. Miura, Chem.
Lett., 2011, 40, 600; for other [4+1] oxidative cycloadditions,
see: (b) K. Takamatsu, K. Hirano and M. Miura, Org. Lett.
by 1H NMR experiments.
[1,4]-H migrations to form intermediates II (see ref. 9). (b)
With alkynyl-1,4-diols 2h and 2i as partners, tautomerization
to the aldehyde (of the initial enol formed) followed by
hemiacetalization (3ai) and oxidation to the lactone (3ah) is
observed.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins