Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
ketone and aryl boronate can be well tolerated. This report
Chem., Int. Ed., 2012, 51, 12551.
offers a simple and convenient method to access various 9. (a) X. Wu, L. Chu and F.‐L. Qing, Angew.DCOheI:m10.,.1I0n3tV9.i/eECwd6.AC,rt2Cic00le11O934n,l45inG2e,
trifluoromethylated aliphatic compounds using easily
accessible and relatively low‐cost starting materials.
2198; (b) S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana,
M. O’Duill, K. Wheelhouse, G. Rassias, M. Médebielle and V.
Gouverneur, J. Am. Chem. Soc., 2013, 135, 2505. (c) D. J. Wilger,
N. J. Gesmundo and D. A. Nicewicz, Chem. Sci., 2013, 4, 3160;
(d) Q. Lefebvre, N. Hoffmann and M. Rueping, Chem. Commun.,
2016, 52, 2493.
10. (a) D. A. Nicewicz and D. S. Hamilton, Synlett, 2014, 25, 1191; (b)
Y. Yang, S.‐L. Shi, D. Niu, P. Liu and S. L. Buchwald, Science,
2015, 349, 62; (c) J. C. Lo, J. Gui, Y. Yabe, C. M. Pan and P. S.
Barn, Nature, 2014, 516, 343.
11. For selected reviews, see: (a) M. A. Miranda and H. Garcia,
Chem. Rev., 1994, 94, 1063; (b) J. M. R. Narayanam and C. R. J.
Stephenson, Chem. Soc. Rev., 2011, 40, 102; (c) J. Xuan and W.‐
J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828; (d) L. Shi and W.
Xia, Chem. Soc. Rev., 2012, 41, 7687; (e) C. K. Prier, D. A. Rankic
and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (f) M.
Reckenthäler and A. G. Griesbeck, Adv. Synth. Catal., 2013, 355,
2727; (g) J. Xie, H. Jin, P. Xu and C. Zhu, Tetrahedron Lett., 2014,
55, 36; (h) D. M. Schultz and T. P. Yoon, Science 2014, 343,
1239176; (i) T. Koike and M. Akita, Top. Catal., 2014, 57, 967; (j)
S. Barata‐Vallejo, S. M. Bonesi and A. Postigo, Org. Biomol.
Chem., 2015, 13, 11153; (k) E. J. Cho, Chem. Rec., 2016, 16, 47.
12. For selected examples, see: (a) N. Iqbal, S. Choi, E. Kim and E. J.
Cho, J. Org. Chem., 2012, 77, 11383; (b) N. Iqbal, S. Choi, E. Ko
and E. J. Cho, Tetrahedron Lett., 2012, 53, 2005; (c) N. Iqbal, J.
Jung, S. Park and E. J. Cho, Angew. Chem. Int. Chem., 2014, 53,
539; (d) J. Xie, X. Yuan, A. Abdukader, C. Zhu and J. Ma, Org.
Lett., 2014, 16, 1768; (e) B. Sahoo, J.‐L. Li and F. Glorius, Angew.
Chem. Int. Ed., 2015, 54, 11577. (f) W.‐M. Cheng, R. Shang, H.‐Z.
Yu and Y. Fu, Chem. Eur. J., 2015, 21, 13191. (e) S. Park, J. M.
Joo and E. J. Cho, Eur. J. Org. Chem., 2015, 4093.
Figure 5. Proposed mechanism.
We acknowledge the financial support from the National
Natural Science Foundation of China (No. 21304032), the
Natural Science Foundation of Hubei Province of China (No.
2014CFB570) and Hubei Engineering University.
Notes and references
1. (a) M. Schlosser, Angew. Chem., Int. Ed., 2006, 45, 5432; (b) K.
Muller, C. Faeh and F. Diederich, Science, 2007, 317, 1881.
2. For selected reviews: (a) J. Nie, H.‐C. Guo, D. Cahard and J.‐A.
Ma, Chem. Rev., 2011, 111, 455; (b) X.‐F. Wu, H. Neumann and
M. Beller, Chem. Asian J., 2012, 7, 1744; (c) A. Studer, Angew.
Chem., Int. Ed., 2012, 51, 8950; (d) L. Chu and F.‐L. Qing, Acc.
Chem. Res., 2014, 47, 1513; (e) E. Merino and C. Nevado, Chem.
Soc. Rev., 2014, 43, 6598; (f) H. Egami and M. Sodeoka, Angew.
Chem., Int. Ed., 2014, 53, 8294.
3. (a) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson and
S. L. Buchwald, Science, 2010, 328, 1679; (b) C.‐P. Zhang, J. Cai,
C.‐B. Zhou, X.‐P. Wang, X. Zheng, Y.‐C. Gu and J.‐C. Xiao, Chem.
Commun., 2011, 47, 9516; (c) H. Morimoto, T. Tsubogo, N. D.
Litvinas and J. F. Hartwig, Angew. Chem., Int. Ed., 2011, 50,
3793; (d) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Dunder, D. D.
Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R.
Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95.
4. (a) A. T. Parsons and S. L. Buchwald, Angew. Chem., Int. Ed.,
2011, 50, 9120; (b) X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y.
Zhang and J. Wang, J. Am. Chem. Soc., 2011, 133, 16410; (c) L.
Chu and F.‐L. Qing, Org. Lett., 2012, 14, 2106; (d) R. Shimizu, H.
Egami, Y. Hamashima and M. Sodeoka, Angew. Chem., Int. Ed.,
2012, 51, 4577; (e) S. Mizuta, O. Galicia‐López, K. M. Engle, S.
Verhoog, K. Wheelhouse, G. Rassias and V. Gouverneur, Chem.
Eur. J., 2012, 18, 8583.
5. T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470.
6. (a) T. Umemoto and S. Ishihara, Tetrahedron Lett., 1990, 31,
3579; (b) T. Umemoto, Chem. Rev., 1996, 96, 1757; (c) I.
Kieltsch, P. Eisenberger and A. Togni, Angew. Chem., Int. Ed.,
2007, 46, 754; (d) B. R. Langlois, E. Laurent and N. Roidot,
Tetrahedron Lett., 1991, 32, 7525; (e) I. Ruppert, K. Schlich and
W. Volbach, Tetrahedron Lett., 1984, 25, 2195; (f) S. K. S.
Prakash, R. Krishnamurti and G. A. Olah, J. Am. Chem. Soc.,
1989, 111, 393.
7. (a) D.‐B. Su, J.‐X. Duan and Q.‐Y. Chen, Tetrahedron Lett., 1991,
32, 7689; (b) Q.Y.‐Chen and J.‐X. Duan, J. Chem. Soc., Chem.
Commun., 1993, 1389; (c) J. Kim and J. M. Shreeve, Org. Biomol.
Chem., 2004, 2, 2728.
13. J.‐B. Tommasino, A. Brondex, M. Médebielle, M. Thomalla, B. R.
Langlois and T. Billard, 2002, 1697.
14. (a) D. S. Hamilton and D. A. Nicewicz, J. Am. Chem. Soc., 2012,
134, 18577; (b) J.‐M. Grandjean and D. A. Nicewicz, Angew.
Chem., Int. Ed., 2013, 52, 3967.
15. J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam and C. R. J.
Stephenson, Nature Chem., 2012, 4, 854.
16. C. K. Prier and D. W. C. MacMillan, Chem. Sci., 2014, 5, 4173.
17. (a) Y. Miyake, K. Nakajima and Y. Nishibayashi Chem. Commun.,
2013, 49, 7854; (b) L.‐L. Chu, C. Ohta, Z.‐W. Zuo and D. W. C.
MacMillan, J. Am. Chem. Soc., 2014, 136, 10886; (c) G.‐Z. Wang,
R. Shang, W.‐M. Cheng and Y. Fu, Org. Lett., 2015, 17, 4830.
18. Y. Li and A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8221.
19. When CD3OH was used as solvent, 3a‐D was not obtained.
20. (a) W. R. Dolbier Jr, Chem. Rev., 1996, 96, 1557; (b) Y. Fu, L. Liu,
H.‐Z. Yu, Y.‐M. Wang and Q.‐X. Guo, J. Am. Chem. Soc., 2005,
127, 7227; (c) S. Barata‐Vallejo and A. Postigo, Eur. J. Org.
Chem., 2012, 1889.
21. The quantum yield of the reaction was measured to be 3.1 by
using a reported method (see the SI), which suggests that a
short chain radical mechanism is also probably concomitant.
According to suggestion of one referee, a pathway involving
hydrogen abstraction from methanol to alkyl radical
generating methoxy radical followed by oxidation of Ir(II) by
methoxy radical to finish the photoredox cycle can not be ruled
out.
8. J. Xu, B. Xiao, C.‐Q. Xie, D.‐F. Luo, L. Liu, and Y. Fu, Angew.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins