Organic & Biomolecular Chemistry
Communication
may provide an overall advantage of a better oral bioavailability
due to the improved hydrophobicity of zanamivir resulting
from the addition of hydrophobic groups at its guanidine site.
Finally, we anticipate that these findings may provide new
insight that will aid in the development of a new generation of
anti-influenza drugs.
The research was supported by the National Tsing Hua Uni-
versity, the National Health Research Institutes, the National
Chiao Tung University and the National Science Council in
Taiwan.
Notes and references
Fig. 3 Computational conformations of the compounds in the open-form of
H1N1 neuraminidase. Molecular surface of N1 neuraminidase with bound
compound 3j (A) and the docking results of compounds 3j (B), 14ad (C), and
zanamivir (D) with neuraminidase in the open form with carbon atoms of inhibitor
in cyancolor and protein carbons in light blue color. Oxygen and nitrogen atoms
are red and blue, respectively. Hydrogen bonds between the compounds and
the protein are represented by green dotted lines.
1 (a) A revision of the system of nomenclature for influenza
viruses: A WHO memorandum, Bull. World Health Organ.,
1980, 58, 585–591; (b) S. Tong, Y. Li, P. Rivailler,
C. Conrardy, D. A. A. Castillo, L.-M. Chen, S. Recuenco,
J. A. Ellison, C. T. Davis, I. A. York, A. S. Turmelle,
D. Moran, S. Rogers, M. Shi, Y. Tao, M. R. Weil, K. Tang,
L. A. Rowe, S. Sammons, X. Xu, M. Frace, K. A. Lindblade,
N. J. Cox, L. J. Anderson, C. E. Rupprecht and R. O. Donis,
Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 4269–4274.
2 J. D. Thompson, D. G. Higgins and T. J. Gibson, Comput.
Appl. Biosci., 1994, 10, 19–29.
3 C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang,
S. Swaminathan, N. Bischofberger, M. S. Chen,
D. B. Mendel, C. Y. Tai, W. G. Laver and R. C. Stevens,
J. Am. Chem. Soc., 1997, 119, 681–690.
4 M. von Itzstein, W.-Y. Wu, G. B. Kok, M. S. Pegg,
J. C. Dyason, B. Jin, T. V. Phan, M. L. Smythe, H. F. White,
S. W. Oliver, P. M. Colman, J. N. Varghese, D. M. Ryan,
J. M. Woods, R. C. Bethell, V. J. Hotham, J. M. Cameron
and C. R. Penn, Nature, 1993, 363, 418–423.
5 M. D. de Jong, T. T. Thanh, T. H. Khanh, V. M. Hien,
G. J. D. Smith, N. V. Chau, B. V. Cam, P. T. Qui, D. Q. Ha,
Y. Guan, J. S. M. Peiris, T. T. Hien and J. Farrar,
Engl. J. Med., 2005, 353, 2667–2672.
6 (a) J.-J. Shie, J.-M. Fang, P.-T. Lai, W.-H. Wen, S.-Y. Wang,
Y.-S. E. Cheng, K.-C. Tsai, A.-S. Yang and C.-H. Wong, J. Am.
Chem. Soc., 2011, 133, 17959–17965; (b) A. K. Weight,
J. Haldar, L. Álvarez de Cienfuegos, L. V. Gubareva,
T. M. Tumpey, J. Chen and A. M. Klibanov, J. Pharm. Sci.,
2011, 100, 831–835; (c) T.-T. Dao, B.-T. Tung, P.-H. Nguyen,
P.-T. Thuong, S.-S. Yoo, E.-H. Kim, S.-K. Kim and W.-K. Oh,
J. Nat. Prod., 2010, 73, 1636–1642.
residues, whereas the carboxylic acid forms four hydrogen
bonds with Arg292 and Arg371 (Fig. 3B and 3D). In contrast,
the N-alkylated guanidino group of compound 14ad has only
one hydrogen bond with NA (Fig. 3C). In addition, the aro-
matic or heterocyclic group of compound 3 fit into the 150-
cavity and interacted with residues Q136, G147, V149, and
T439, which form a hydrophobic pocket. Overall, although the
modification of the guanidino group of zanamivir results in
the loss of four H-bonds, the hydrophobic interaction between
the 150-cavity and the hydrophobic substituent compensates
for this loss in binding energy, resulting in only a minimal
reduction in the binding energy. These results suggest that the
addition of a hydrophobic group to zanamivir that fits into the
150-cavity could be a good strategy to enhance the binding
affinity. In addition, the modification at the C-3 position of
zanamivir seems to be another approach to obtain a more
potent inhibitor because the hydrogen bonding between the
guanidine group and NA may be retained, and thus the
extended group can target the 150-cavity.
Conclusions
In summary, the results show that acylguanidine derivatives of
zanamivir are more potent inhibitors than the corresponding
N-alkylated derivatives and that the carbonyl group plays
a dominant role in binding by generating three additional
H-bonds with R118 and D151 of NA. Although the modifications
at the guanidino group of zanamivir interrupt the H-bonding
interactions with NA, the addition of a carbonyl group and a
hydrophobic moiety can compensate for the binding energy
loss. Among the compounds tested, 3j displayed the highest
7 R. J. Russell, L. F. Haire, D. J. Stevens, P. J. Collins,
Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin and
J. J. Skehel, Nature, 2006, 443, 45–49.
8 R. E. Amaro, X. Cheng, I. Ivanov, D. Xu and
J. A. McCammon, J. Am. Chem. Soc., 2009, 131, 4702–4709.
9 R. E. Amaro, R. V. Swift, L. Votapka, W. W. Li, R. C. Walker
and R. M. Bush, Nat. Commun., 2011, 2, 388.
potency against both N1 and N2, with IC50 values of 20 nM 10 (a) S.-Q. Wang, X.-C. Cheng, W.-L. Dong, R.-L. Wang and
and 25 nM, respectively. Although there is no apparent selecti-
vity among the NAs when targeting the 150-loop, our results
K.-C. Chou, Biochem. Biophys. Res. Commun., 2010, 401,
188–191; (b) S. Mohan, S. McAtamney, T. Haselhorst,
This journal is © The Royal Society of Chemistry 2013
Org. Biomol. Chem., 2013, 11, 3943–3948 | 3947