Ionic Liquid Supported C2-Symmetric Bisprolinamides as Organocatalysts
[4]
a) C. H. Wong, G. M. Whitesides, Enzymes in Synthetic Or-
ganic Chemistry. Pergamon, Oxford, 1994; b) T. D. Machajew-
ski, C. H. Wong, Angew. Chem. 2000, 112, 1406–1430; Angew.
Chem. Int. Ed. 2000, 39, 1352–1374.
tively. HRMS were measured with a Bruker microTOF II spec-
trometer by using electrospray ionization (ESI). The measurements
were taken either in the positive ion mode (interface capillary volt-
age 4500 V) or in the negative ion mode (3200 V) in the mass range
[5]
a) P. I. Dalko (Ed.), Enantioselective Organocatalysis: Reactions
and Experimental Procedures, Wiley-VCH, Weinheim, 2007 b)
A. Berkessel, H. Gröger, Asymmetric Organocatalysis – From
Biomimetic Concepts to Applications in Asymmetric Synthesis
Wiley-VCH, Weinheim, 2005; c) B. List (Ed.), Topics in Current
Chemistry Vol. 291: Asymmetric Organocatalysis, Springer,
Berlin, 2009; d) H. Pellissier, Recent Developments in Asymmet-
ric Organocatalysis, Royal Society of Chemistry, 2010.
a) W. Notz, F. Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004,
37, 580–591; b) S. Saito, H. Yamamoto, Acc. Chem. Res. 2004,
37, 570–579; c) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List,
Chem. Rev. 2007, 107, 5471–5569; d) G. Guillena, C. Nájera,
D. J. Ramón, Tetrahedron: Asymmetry 2007, 18, 2249–2293; e)
J. Mlynarski, J. Paradowska, Chem. Soc. Rev. 2008, 37, 1502–
1511; f) S. G. Zlotin, A. S. Kucherenko, I. P. Beletskaya, Russ.
Chem. Rev. 2009, 78, 737–784; g) B. M. Trost, C. S. Brindle,
Chem. Soc. Rev. 2010, 39, 1600–1632; h) E. Montroni, S. P.
Sanap, M. Lombardo, A. Quintavalla, C. Trombini, D. D.
Dhavale, Adv. Synth. Catal. 2011, 353, 3234–3240; i) E. Mon-
troni, M. Lombardo, A. Quintavalla, C. Trombini, M. Grutta-
dauria, F. Giacalone, ChemCatChem 2012, 4, 1000–1006.
a) Z. Tang, F. Jiang, L. T. Yu, X. Cui, L. Z. Gong, A. Q. Mi,
Y. Z. Jiang, Y. D. Wu, J. Am. Chem. Soc. 2003, 125, 5262–5263;
b) S. Samanta, J. Liu, R. Dodda, C. Zhao, Org. Lett. 2005, 7,
5321–5323; c) Z. Tang, Z. H. Yang, X. H. Chen, L. F. Cun,
A. Q. Mi, Y. Z. Jiang, L. Z. Gong, J. Am. Chem. Soc. 2005,
127, 9285–9289; d) S. Tanimori, T. Naka, M. Kirihata, Synth.
Commun. 2004, 34, 4043–4048; e) Y. Q. Fu, Z. C. Li, L. N.
Ding, J. C. Tao, S. H. Zhang, M. S. Tang, Tetrahedron: Asym-
metry 2006, 17, 3351–3357; f) L. He, J. Jiang, Z. Tang, X. Cui,
A. Q. Mi, Y. Z. Jiang, L. Z. Gong, Tetrahedron: Asymmetry
2007, 18, 265–270; g) X. Liu, L. Lin, X. Feng, Chem. Commun.
2009, 41, 6145–6158; h) X.-H. Chen, J. Yu, L.-Z. Gong, Chem.
Commun. 2010, 46, 6437–6448; i) G. T. Tang, X. M. Hu, H. J.
Altenbach, Tetrahedron Lett. 2011, 52, 7034–7037; j) J. P. De-
laneya, L. C. Henderson, Adv. Synth. Catal. 2012, 354, 197–
204; k) G. Guillena, M. C. Hita, C. Nájera, Tetrahedron: Asym-
metry 2006, 17, 729–733.
from m/z = 50–3000 Da; external or internal calibration was done
with electrospray calibrant solution (Fluka). Syringe injection was
used for solution in methanol (flow rate 3 μLmin–1). Nitrogen was
applied as a dry gas, and the interface temperature was set at
180 °C. Elemental analysis was carried out with a microanalyzer
Perkin–Elmer 2400. IR spectra (KBr pellets) were recorded with a
Specord M82 spectrometer. Silica gel 0.060–0.200 (Acros) was used
[6]
for column chromatography. The solvents were purified by stan-
dard procedures.
General Procedure for the Aldol Reaction: A mixture of ketone 9
(159 μmol), aldehyde 10 (53 μmol), organocatalyst 2a–c (5.3 μmol),
and distilled water (0.1 mL) was stirred at ambient temperature for
24 h. Aldol 11 and the remaining starting compounds were ex-
tracted with Et2O (2ϫ 3 mL), and the combined extract was fil-
tered through a pad of silica gel (1 g) and evaporated under reduced
pressure (15 Torr). Conversions and dr values of aldol products 11
were measured by 1H NMR spectroscopy. The ee values of aldol
products 11 were determined by HPLC (Chiralcel OD–H, OJ–H,
Chiralpak AD–H). NMR spectra and HPLC data for aldol prod-
[7]
ucts 11a–n are available in the cited articles.[15]
Catalyst Recycling: The residue, which was obtained after extrac-
tion of the reaction mixture with Et2O, was dried under reduced
pressure (15 Torr, 60 °C, 30 min). Fresh portions of starting com-
pounds 9a, 10a, and water were added, and the reaction was per-
formed as described above. The experiments were scaled up by
using amide 2b (95 mg, 0.1 mmol), 9a (0.31 mL, 3 mmol), 10a
(151 mg, 1 mmol), and distilled water (2 mL). Upon extraction of
11a with Et2O (5ϫ 5 mL), fresh portions of starting compounds
9a and 10a were added to the remaining suspension of catalyst 2b
in water, and the reaction was performed once again.
Supporting Information (see footnote on the first page of this arti-
1
cle): Procedures for the preparation of each compound; H NMR,
13C NMR, IR, and HRMS spectra and element analysis.
[8]
[9]
S. V. Kochetkov, A. S. Kucherenko, S. G. Zlotin, Eur. J. Org.
Chem. 2011, 6128–6133.
a) C.-J. Li, L. Chen, Chem. Soc. Rev. 2006, 35, 68–82; b) M.
Gruttadauria, F. Giacalone, R. Noto, Adv. Synth. Catal. 2009,
351, 33–57; c) M. Raj, V. K. Singh, Chem. Commun. 2009,
6687–6703; d) N. Mase, C. F. Barbas III, Org. Biomol. Chem.
2010, 8, 4043–4050; e) S. Bhowmick, K. C. Bhowmick, Tetrahe-
dron: Asymmetry 2011, 22, 1945–1979.
Acknowledgments
We gratefully acknowledge financial support of the President of the
Russian Federation (Young PhD Grant MK-3551.2012.3) and of
the Russian Foundation of Basic Research (Grant 12-03-00420).
[10]
[11]
a) S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C.
Kolb, K. B. Sharpless, Angew. Chem. 2005, 117, 3339–3343;
Angew. Chem. Int. Ed. 2005, 44, 3275–3279; b) Y. Hayashi, An-
gew. Chem. 2006, 118, 8281–8282; Angew. Chem. Int. Ed. 2006,
45, 8103–8104.
a) M. Gruttadauria, F. Giacalone, A. M. Marculescu, R. Noto,
Adv. Synth. Catal. 2008, 350, 1397–1405; b) M. Gruttadauria,
F. Giacalone, A. M. Marculescu, A. M. P. Salvo, R. Noto, AR-
KIVOC 2009, viii, 5–15; c) T. E. Kristensen, K. Vestli, K. A.
Fredriksen, F. K. Hansen, T. Hansen, Org. Lett. 2009, 11,
2968–2971; d) D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin,
Tetrahedron 2010, 66, 513–518.
[1] a) P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248–5286;
Angew. Chem. Int. Ed. 2004, 43, 5138–5175; b) D. W. C. Mac-
Millan, Nature 2008, 455, 304–308; c) A. Dondoni, A. Massi,
Angew. Chem. 2008, 120, 4716–4739; Angew. Chem. Int. Ed.
2008, 47, 4638–4660; d) P. Melchiorre, M. Marigo, A. Carlone,
G. Bartoli, Angew. Chem. 2008, 120, 6232–6265; Angew. Chem.
Int. Ed. 2008, 47, 6138–6171; e) S. Bertelsen, K. A. Jørgensen,
Chem. Soc. Rev. 2009, 38, 2178–2189.
[2] a) B. List, Chem. Commun. 2006, 819–824; b) M. J. Gaunt,
C. C. C. Johansson, A. McNally, N. T. Vo, Drug Discovery To-
day 2007, 12, 8–27; c) X. Yu, W. Wang, Chem. Asian J. 2008,
3, 516–532; d) S. J. Connon, Chem. Commun. 2008, 2499–2510;
e) Y. Takemoto, Chem. Pharm. Bull. 2010, 58, 593–601.
[3] a) R. M. Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007,
2575–2600; b) E. Marqués-López, R. P. Herrera, M.
Christmann, Nat. Prod. Rep. 2010, 27, 1138–1167; c) C. Gron-
dal, M. Jeanty, D. Enders, Nature Chem. 2010, 2, 167–178; d)
O. V. Maltsev, I. P. Beletskaya, S. G. Zlotin, Russ. Chem. Rev.
2011, 80, 1067–1113.
[12]
Z. Lu, H. Mei, J. Han, Y. Pan, Chem. Biol. Drug Des. 2010,
76, 181–186.
[13]
[14]
C. Wu, X. Fu, S. Li, Eur. J. Org. Chem. 2011, 7, 1291–1299.
a) A. Nievergelt, P. Huonker, K. Altmann, J. Gertsch, R.
Schoop, Bioorg. Med. Chem. 2010, 18, 3345–3351; b) C.
Changtam, A. Suksamrarn, H. P. de Koning, H. Ibrahim,
M. S. Sajid, M. K. Gould, Eur. J. Med. Chem. 2010, 45, 941–
956; c) S. Sang, J. Hong, J. Liu, C. S. Yang, H. Wu, C. Ho, M.
Eur. J. Org. Chem. 2012, 7129–7134
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7133