Communication
ChemComm
9 A. Dondoni and A. Marra, Chem. Soc. Rev., 2012, 41, 573–586; W. Chan,
B. Yu, C. E. Hoyle and A. B. Lowe, Chem. Commun., 2008, 4959–4961.
10 B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978, 17,
522–524.
11 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001,
40, 2004–2021; P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker,
In summary, we demonstrated that the structural diversity
in the construction of ‘‘onion peel’’ dendrimers, accessible via
both convergent and divergent routes, represents an additional
strategy for the build-up of dense surface groups at low dendrimer
generations. It also represents clear advantages over existing
approaches by providing versatile hypercore building blocks. More-
over, by not restricting layer-by-layer syntheses using identical
subunits, one can programme the physical/biophysical properties
of the dendrimers, as exemplified here using TEG residues. Of
particular interest in this instance, is the use of underexploited
dipentaerythritol as an A6 core molecule. In fact, work is now in
progress for further application of this useful building block as an
AB5 moiety. The work presented herein will undoubtedly be useful
to generate efficient and programmable multivalent antiadhesive
agents against bacterial infections.7a,24 Rationalization of the
preferential binding mode(s) together with determination of
the precise role of each structural parameter leading to high
avidity ligands such as in compound 23 are under investiga-
tion. Multivalent ‘‘onion peel’’ inhibitors harbouring optimized
sugar epitopes, notably containing aromatic residues, are also
presently under study. Further applications as antiadhesins
towards galectins,17 or as vectors for vaccines or drug targeting
nanomaterials25 are also under investigation.
´
A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and
V. V. Fokin, Angew. Chem., Int. Ed., 2004, 43, 3928–3932.
12 S. Zhang and Y. Zhao, Bioconjugate Chem., 2011, 22, 523–528.
13 R. Roy, F. D. Tropper, S. Cao and J. M. Kim, ACS Symp. Ser., 1997,
659, 163–180.
14 K. M. Halkes, A. Carvalho de Souza, C. E. P. Maljaars, G. J. Gerwig
and J. P. Kamerling, Eur. J. Org. Chem., 2005, 3650–3659.
15 Y. M. Chabre, A. Papadopoulos, A. Arnold and R. Roy, Beilstein
J. Org. Chem., 2014, 10, 1524–1535.
16 M. L. Talaga, N. Fan, A. L. Fueri, R. K. Brown, Y. M. Chabre,
P. Bandyopadhyay, R. Roy and T. K. Dam, Biochemistry, 2014, 53,
4445–4454.
17 (a) V. Percec, P. Leowanawat, H.-J. Sun, O. Kulikov, C. D. Nusbaum,
T. M. Tran, A. Bertin, D. A. Wilson, M. Peterca, S. Zhang, N. P. Kamat,
K. Vargo, D. Moock, E. D. Johnston, D. A. Hammer, D. J. Pochan,
´
Y. Chen, Y. M. Chabre, T. C. Shiao, M. Bergeron-Brlek, S. Andre,
R. Roy, H.-J. Gabius and P. A. Heiney, J. Am. Chem. Soc., 2013, 135,
9055–9077; (b) S. Zhang, R.-O. Moussodia, H.-J. Sun, P. Leowanawat,
A. Muncan, C. D. Nusbaum, K. M. Chelling, P. A. Heiney, M. L. Klein,
´
S. Andre, R. Roy, H.-J. Gabius and V. Percec, Angew. Chem., Int. Ed.,
2014, DOI: 10.1002/anie.201403186.
18 (a) J. Rodrigue, G. Ganne, B. Blanchard, C. Saucier, D. Giguere,
`
T. C. Shiao, A. Varrot, A. Imberty and R. Roy, Org. Biomol. Chem.,
2013, 11, 6906–6918; (b) A. Imberty, Y. M. Chabre and R. Roy,
Chem. – Eur. J., 2008, 14, 7490–7499; (c) J.-L. Reymond, M. Bergmann
and T. Darbre, Chem. Soc. Rev., 2013, 42, 4814–4822.
This work was supported by a discovery grant from the National
Science and Engineering Research Council of Canada (NSERC) and
by a Canadian Research Chair in Therapeutic Chemistry.
19 L. Harmand, S. Cadet, B. Kauffmann, L. Scarpantonio, P. Batat,
´
`
G. Jonusauskas, N. D. McClenaghan, D. Lastecoueres and J.-M. Vincent,
Angew. Chem., Int. Ed., 2012, 51, 7137–7141.
20 H. Tamiaki, A. Shinkai and Y. Kataoka, J. Photochem. Photobiol., A,
2009, 207, 115–125.
Notes and references
´
21 S. Cecioni, J.-P. Praly, S. E. Matthews, M. Wimmerova, A. Imberty
¨
1 (a) E. Buhleier, W. Wehner and F. Vogtle, Synthesis, 1978, 155–158;
and S. Vidal, Chem. – Eur. J., 2012, 18, 6250–6263.
(b) A.-M. Caminade, C.-O. Turrin and J.-P. Majoral, New J. Chem., 22 (a) Y. C. Lee and R. T. Lee, Acc. Chem. Res., 1995, 28, 321–327;
2010, 34, 1512–1524; (c) S. Svenson and D. A. Tomalia, Adv. Drug
Delivery Rev., 2005, 57, 2106–2129; (d) M. A. Mintzer and
(b) R. Roy, Curr. Opin. Struct. Biol., 1996, 6, 692–702; (c) J. J. Lundquist
and E. J. Toone, Chem. Rev., 2002, 102, 555–578.
M. W. Grinstaff, Chem. Soc. Rev., 2011, 40, 173–190; (e) M. Sowinska 23 (a) S. Cecioni, V. Oerthel, J. Iehl, M. Holler, D. Goyard, J.-P. Praly,
and Z. Urbanczyk-Lipkowska, New J. Chem., 2014, 38, 2168–2203.
2 (a) D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin,
J. Roeck, J. Ryder and P. Smith, Polym. J., 1985, 17, 117–132; (b) N. Launay,
A.-M. Caminade and J.-P. Majoral, J. Am. Chem. Soc., 1995, 117,
3282–3283.
A. Imberty, J.-F. Nierengarten and S. Vidal, Chem. – Eur. J., 2011, 17,
3252–3261; (b) S. Cecioni, S. Faure, U. Darbost, I. Bonnamour,
´
H. Parrot-Lopez, O. Roy, C. Taillefumier, M. Wimmerova, J.-P. Praly,
A. Imberty and S. Vidal, Chem. – Eur. J., 2011, 17, 2146–2159.
24 (a) A. Bernardi, J. Jimenez-Barbero, A. Casnati, C. De Castro, T. Darbre,
F. Fieschi, J. Finne, H. Funken, K.-E. Jaeger, M. Lahmann,
T. K. Lindhorst, M. Marradi, P. Messner, A. Molinaro, P. V. Murphy,
C. Nativi, S. Oscarson, S. Penades, F. Peri, R. J. Pieters, O. Renaudet,
J.-L. Reymond, B. Richichi, J. Rojo, F. Sansone, C. Schaffer, W. B.
Turnbull, T. Velasco-Torrijos, S. Vidal, S. Vincent, T. Wennekes,
H. Zuilhof and A. Imberty, Chem. Soc. Rev., 2013, 42, 4709–4727;
(b) N. Berthet, B. Thomas, I. Bossu, E. Dufour, E. Gillon, J. Garcia,
N. Spinelli, A. Imberty, P. Dumy and O. Renaudet, Bioconjugate Chem.,
2013, 24, 1598–1611.
´
3 C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 1990, 112,
7638–7647.
4 F. Zeng and S. C. Zimmerman, J. Am. Chem. Soc., 1996, 118, 5326–5327.
5 K. L. Killops, L. M. Campos and C. J. Hawker, J. Am. Chem. Soc.,
2008, 130, 5062–5064.
6 (a) N. Kottari, Y. M. Chabre, T. C. Shiao, R. Rej and R. Roy, Chem.
´
Commun., 2014, 50, 1983–1985; (b) S. Chatani, M. Podgorski,
C. Wang and C. N. Bowman, Macromolecules, 2014, 47, 4894–4900,
DOI: 10.1021/ma501418r.
´
7 (a) Y. M. Chabre and R. Roy, Adv. Carbohydr. Chem. Biochem., 2010, 25 (a) S. Andre, P. J. C. Ortega, M. A. Perez, R. Roy and H.-J. Gabius,
`
´
63, 165–393; (b) Y. M. Chabre and R. Roy, Curr. Top. Med. Chem.,
2008, 8, 1237–1285; (c) Y. M. Chabre and R. Roy, Chem. Soc. Rev.,
2013, 42, 4657–4708; (d) O. Renaudet and R. Roy, Chem. Soc. Rev.,
2013, 42, 4515–4517; (e) M. Gingras, Y. M. Chabre, M. Roy and
R. Roy, Chem. Soc. Rev., 2013, 42, 4823–4841.
Glycobiology, 1999, 9, 1253–1261; (b) D. Giguere, S. Andre,
M. A. Bonin, M. A. Bellefleur, A. Provencal, P. Cloutier, B. Pucci,
R. Roy and H. J. Gabius, Bioorg. Med. Chem., 2011, 19, 3280–3287;
´
(c) S. Andre, B. Liu, H.-J. Gabius and R. Roy, Org. Biomol. Chem.,
´
2003, 1, 3909–3916; (d) N. Ahmad, H.-J. Gabius, S. Andre, H. Kaltner,
8 R. Sharma, K. Naresh, Y. M. Chabre, R. Rej, N. K. Saadeh and R. Roy,
Polym. Chem., 2014, 5, 4321–4331.
S. Sabesan, R. Roy, B. Liu, F. Macaluso and C. F. J. Brewer, Biol.
Chem., 2004, 279, 10841–10847.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 13300--13303 | 13303