Journal of the American Chemical Society
Communication
Chem. Rev. 2011, 111, 2119. (c) Phosphorus(III) Ligands in Homogeneous
Catalysis: Design and Synthesis; Kamer, P. C. J., van Leeuwen, P. W. N.
M., Eds.; Wiley: Chichester, U.K., 2012. (d) Borner, A. Phosphorus
Ligands in Asymmetric Catalysis; Wiley-VCH: Weinheim, 2008.
arylation process provides an effective way to produce
enantioenriched TPOs in excellent yield with very high
enantiomeric excess.
We demonstrated the utility of these enantioenriched TPOs
through further transformations of the P-chiral scaffold (Scheme
3). We carried out Suzuki cross-coupling of 3ak to form a chiral
(2) (a) Horner, L.; Siegel, H.; Buthe, H. Angew. Chem., Int. Ed. Engl.
̈
1968, 7, 942. (b) Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968,
22, 1445. (c) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman,
G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.
Scheme 3. Transformations of TPOs
(3) For recent examples, see: (a) Han, Z. S.; Goyal, N.; Herbage, M. A.;
Sieber, J. D.; Qu, B.; Xu, Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.;
Grinberg, N.; Lee, H.; Mangunuru, H. P. R.; Zhang, Y.; Krishnamurthy,
D.; Lu, B. Z.; Song, J. J.; Wang, G.; Senanayake, C. H. J. Am. Chem. Soc.
2013, 135, 2474. (b) Rast, S.; Mohar, B.; Stephan, M. Org. Lett. 2014, 16,
2688. (c) Sieber, J. D.; Chennamadhavuni, D.; Fandrick, K. R.; Qu, B.;
Han, Z. S.; Savoie, J.; Ma, S.; Samankumara, L. P.; Grinberg, N.; Lee, H.;
Song, J. J.; Senanayake, C. H. Org. Lett. 2014, 16, 5494. (d) For a general
overview, see ref 1c.
(4) (a) Kovacik, I.; Wicht, D. K.; Grewal, N. S.; Glueck, D. S.; Incarvito,
C. D.; Guzei, I. A.; Rheingold, A. L. Organometallics 2000, 19, 950.
(b) Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y.
R. J. Am. Chem. Soc. 2016, 138, 7524. (c) Chan, V. S.; Chiu, M.;
Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6021.
(d) Korff, C.; Helmchen, G. Chem. Commun. 2004, 530. (e) Lin, Z.-Q.;
Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54,
6265. (f) Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; Gao, L.-X.; Han, F.-S. J.
Am. Chem. Soc. 2015, 137, 632. (g) Liu, L.; Zhang, A.-A.; Wang, Y.;
Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17,
2046. (h) Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2016,
(5) (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc.
2008, 130, 8172. (b) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
(c) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J. J.
Am. Chem. Soc. 2012, 134, 10773. (d) Suero, M. G.; Bayle, E. D.; Collins,
B. S. L.; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135, 5332.
(6) (a) Bigot, A.; Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc.
2011, 133, 13778. (b) Harvey, J. S.; Simonovich, S. P.; Jamison, C. R.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782. (c) Cahard, E.;
Male, H. P. J.; Tissot, M.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 7986.
(d) Zhu, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134, 10815.
Also see: (e) Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 5557.
phosphine oxide analogue of the S/X-Phos-type ligands that are
ubiquitous in Pd-catalyzed transformations.12 Although P-chiral
TPOs are also effective ligands in a range of asymmetric
reactions,13 the corresponding phosphines are more widely used
in chemical synthesis. Therefore, we were pleased to find that
reduction to the corresponding P-chiral phosphines can be
achieved by treating the enantioenriched TPOs with a
combination of MeOTf and LiAlH4 to form the P-chiral
phosphine−BH3 adducts, providing potential opportunities for
asymmetric metal-catalyzed transformations.
In summary, we have described a general and highly
enantioselective route to access P-chiral tertiary phosphine
oxides via a Cu-catalyzed arylation process using readily available
diaryliodonium salts. Although its mechanism remains unclear,
this arylation process provides rapid access to a range of P-chiral
phosphines that have great potential as ligands in catalytic
enantioselective processes. Current studies are focused on
elucidating the mechanism of this reaction and exploring the
applications of the new ligand scaffolds.
(7) Shaikh, T. M.; Weng, C.-M.; Hong, F.-E. Coord. Chem. Rev. 2012,
256, 771.
(8) Xu, J.; Zhang, P.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y. J. Org. Chem.
2013, 78, 8176.
(9) The X-ray structure of 3r confirmed the absolute stereochemistry.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Procedures and spectral data (PDF)
Crystallographic data for 3r (CIF)
AUTHOR INFORMATION
Corresponding Author
Notes
■
(10) (a) Vedejs, E.; Donde, Y. J. Am. Chem. Soc. 1997, 119, 9293.
(b) Moncarz, J. R.; Brunker, T. J.; Jewett, J. C.; Orchowski, M.; Glueck,
D. S.; Sommer, R. D.; Lam, K.-C.; Incarvito, C. D.; Concolino, T. E.;
Ceccarelli, C.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2003,
22, 3205. Also see ref 2c.
The authors declare no competing financial interest.
(11) A similar acid-promoted racemization has been reported. See: Xu,
Q.; Zhao, C.-Q.; Han, L.-B. J. Am. Chem. Soc. 2008, 130, 12648.
(12) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338. (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(13) Benaglia, M.; Rossi, S. Org. Biomol. Chem. 2010, 8, 3824.
ACKNOWLEDGMENTS
■
We are grateful to the European Commission for a Marie Curie
International Outgoing Fellowship (R.J.P.), the ERC (R.B.), the
EPSRC, and the Royal Society (M.J.G.) for fellowships. Mass
spectrometry data were acquired at the EPSRC UK National
Mass Spectrometry Facility at Swansea University.
REFERENCES
■
(1) (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Fernan
́
dez-Per
́
ez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX